Relation-aware Graph Attention Networks with Relational Position Encodings for Emotion Recognition in Conversations

> Softskills Seminar - M2 Data & AI - Institut Polytechnique de Paris Thomas Wimmer, 11.01.2023

Ishiwatari, Taichi, et al. "Relation-aware graph attention networks with relational position encodings for emotion recognition in conversations." Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020.

What will we do in the next 20 minutes?

- What is the problem solved in this work?
- Which work does this paper build on?
- What are the most important contributions?
- Which experiments were carried out? What are the results?
- Is it a valuable contribution to the field?
- What are the key findings?

Emotion Recognition in a nutshell

Anna

Bernard

It's such a lovely day today. How are you doing?

I'm devastated because France didn't win the World Cup.

I see, but it's still nice weather today, isn't it?

I don't care about the weather, now I have to watch PSG dominate the French league again.

You're right. This league is really not as interesting as the German league!

I'd better not remind you of the performance of Germany at the World Cup!

Emotion Recognition in a nutshell

Emotion Recognition in a nutshell

Anna

Bernard

It's such a lovely day today. How are you doing?

I'm devastated because France didn't win the World Cup.

I see, but it's still nice weather today, isn't it?

I don't care about the weather, now I have to watch PSG dominate the French league again.

You're right. This league is really not as interesting as the German league!

I'd better not remind you of the performance of Germany at the World Cup!

Emotion Recognition in a nutshell

Anna

Bernard

Architecture is end-to-end trainable!

Graph Neural Network Basics

Message Passing Network

- 1. Process nodes
- 2. Aggregate neighbourhood nodes
- 3. Update nodes

Graph Neural Network Basics

Message Passing Network

- 1. Process nodes
- 2. Aggregate neighbourhood nodes
- 3. Update nodes

Graph Neural Network Basics

Message Passing Network

- 1. Process nodes
- 2. Aggregate neighbourhood nodes
- 3. Update nodes

Graph Neural Network Basics

Message Passing Network

- 1. Process nodes
- 2. Aggregate neighbourhood nodes
- 3. Update nodes

Active research field:

Many more variants, like e.g., attention, convolutions, gated units, ...

Attention independent for each relation type *r*: $\alpha_{ijr} = softmax_i \left(LeakyReLU(a_r^T[W_rh_i||W_rh_j]) \right)$

Propagation of information through the graph:

$$h_{ir}^{(l-1)} = \sum_{j \in \mathcal{N}^r(i)} \alpha_{ijr}^{(l-1)} W_r^{(l-1)} h_j^{(l-1)}$$
$$h_i^{(l)} = \sum_{r=1}^R h_{ir}^{(l-1)}$$

Relational position encodings:

Absolute Position	1	2	3	4	5	6
Relative Position	-2	-1	0	1	2	3
Relational Position	-1	-1	0	-1	-1	-2

+ learned positional embedding with relational position as input

Attention with added positional encoding PE_{ijr} : $\alpha_{ijr} = softmax_i (LeakyReLU(a_r^T[W_rh_i||W_rh_j]) + PE_{ijr})$ We want to distinguish between these two utterances

Evaluation:

F1 score (micro-averaged / weighted-averaged as used in literature)

Datasets:

IEMOCAP, MELD, EmoryNLP, DailyDialog

https://giphy.com/friends/reactions/excited

Results

Proposed model achieves SOTA performance on all benchmark datasets

Models	IEMOCAP	MELD	EmoryNLP	DailyDialog
CNN	48.18	55.86	32.59	49.34
CNN+cLSTM	54.95	56.87	32.89	50.24
BERT_BASE	53.31	56.21	33.15	53.12
KET	59.56	58.18	34.39	53.37
DialogueRNN	62.75	57.03	31.70	50.65
DialogueGCN	64.18	58.10	-	-
Ours	65.22	60.91	34.42	54.31

Ishiwatari, Taichi, et al. "Relation-aware graph attention networks with relational position encodings for emotion recognition in conversations." Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020.

Influence of Positional Encoding

- BERT encoder contributes to better performance
- Proposed method is well-balanced over all categories

		Background Components								
# 1	Models	Contextual	Speaker	Нарру	Sad	Neutral	Angry	Excited	Frustrated	Average
	Widels	Utterance	Dependency							
		Embedding	Modeling							
0	BERT_BASE	BERT	×	37.09	59.53	51.73	54.33	54.26	55.83	53.31
1	DialogueRNN	CNI	N, GRU	33.18	78.80	59.21	65.28	71.86	58.91	62.75
2	DialogueGCN	CNN, GRU	RGAT	42.75	84.54	63.54	64.19	63.08	66.99	64.18
3	Ours(without PE)	BERT	RGAT	50.69	76.78	65.85	59.66	64.04	62.37	64.36
4	Ours	BERT	RGAT with PE	51.62	77.32	65.42	63.01	67.95	61.23	65.22

Ishiwatari, Taichi, et al. "Relation-aware graph attention networks with relational position encodings for emotion recognition in conversations." Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020.

Assessment of the paper

- State-of-the-art results 🙂
- Thought-provoking paper, generally well-written
- Inconsistencies and missing formulas / explanations
- No published implementation
- Best performing configurations (even architectural choices) not shared
- Work is mainly based on DialogueGCN
- Experiments could go even further

When someone tells me their unwanted opinion

Ideas for Future Work

- Analyze the positional encodings by visualizing the learned 1D (!) function
- Try positional encodings that are multi-dimensional (not just a scalar value)
- Include positional encodings not just by adding it to the attention weights
- Try differentiating between different speakers (instead of throwing everyone in the "inter-speaker dependency" bucket)
- Use attention (or simple learned weights) on the different propagation states of the GNN when using it as input to the classification network

Summary

A new state-of-the-art model for **emotion recognition in conversations** introducing relational position encodings

Relational position encodings:

Absolute Position	1	2	3	4	5	6
Relative Position	-2	-1	0	1	2	3
Relational Position	-1	-1	0	-1	-1	-2

+ learned positional embedding with relational position as input

Backup Slides

Study on best positional encoding

- Absolute position (node-based)
- Relative position (edge-based)
- Relational (proposed method)

Learned encoding always performs better than fixed

#	Position Encodings (PE)	Туре	Average
0	-	-	64.36
1	Node based PE	fixed	63.95
2	Noue-Daseu PE	learn	64.95
3	Edge based PE	fixed	63.97
4	Euge-Daseu PE	learn	64.59
5	Palational DE	fixed	63.99
6	Relational FE	learn	65.22

Table 5: Impact of various position encodings components on the IEMOCAP dataset. The base model using BERT and RGAT without position encodings is shown in $\ddagger 0$. "*fixed*" and "*learn*" denote a fixed function and a learned representation respectively.

Ishiwatari, Taichi, et al. "Relation-aware graph attention networks with relational position encodings for emotion recognition in conversations." Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020.

Influence of different context window sizes

