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What will this presentation cover?

- Motivation

- The model

- Experiments:

1) 3D reconstruction from embedded representations

2) 3D reconstruction from single observation

3) 3D object generation

- Follow-up work
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What are problems with current methods?
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- Discretization of the 3D space 
into a grid of voxels

- Large Memory Footprint (𝒪(𝑛!))

What else could we do?

Voxels

Point clouds

Meshes

- Discretization of the surface 
into 3D points

- Lacking connectivity / 
topology

- Discretization of the surface 
into vertices and faces

- Meshes are hard to predict 
for NNs (complex structure)



What is the key idea?

No explicit representation (≈discretization)

à Model surface implicitly as decision boundary of a non-linear classifier
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3D Location
Condition

(e.g. 2D image)

Occupancy 
Probability

𝑓! ∶ ℝ" ×𝒳 → [0,1]3D Reconstruction:

𝑜 ∶ ℝ! → {0,1}Occupancy function:



CBN

Okay, but how does this look like in practice?
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Okay, but how does this look in practice?

Supervised Learning
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- 𝐵𝐶𝐸: Binary Cross-Entropy
- 𝐾 randomly sampled points 𝑝+, for each training sample 𝑖

(usually 𝐾 = 2048)
- 𝑓-: Occupancy Network
- 𝑧+: Condition for training sample 𝑖
- 𝑜+,: Ground-truth occupancy



Okay, but how does this look in practice?

Unsupervised Learning
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- 𝐵𝐶𝐸: Binary Cross-Entropy
- 𝐾 randomly sampled points 𝑝+, for each training sample 𝑖

(usually 𝐾 = 2048)
- 𝑓-: Occupancy Network
- 𝑧+: Condition for training sample 𝑖
- 𝑜+,: Ground-truth occupancy
- 𝐾𝐿: Kullback-Leibler divergence
- 𝑞.: Encoder (cf. Variational Autoencoder)



Can we convert into explicit representations?
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Mark voxels Subdivide voxels Evaluate network

Marching cubes*Simplify meshRefine using gradients

Repeat N times

* Lorensen, William E., and Harvey E. Cline. "Marching cubes: A high resolution 3D surface construction algorithm." ACM siggraph computer graphics 21.4 (1987): 163-169.



How do we quantify the results?

Volumetric IoU (estimated using 100k randomly sampled 
points from the bounding volume)

Chamfer-𝐿" distance (estimated  by randomly sampling 
100k points from both meshes)

- Accuracy Metric: Mean distance of points on output 
mesh to closest point in ground-truth mesh

- Completeness Metric: Same as the accuracy metric, 
but reversed

Normal consistency score (mean absolute dot product of 
the normal in one mesh and the corresponding nearest neighbour 
in the other mesh)
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Which experiments can we conduct?

1) 3D Reconstruction from embedded 
representation

- “chair” category of the ShapeNet Dataset

à Embed each training sample in a

512 dimensional latent space and train the neural 

network to reconstruct the 3D shape
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Which experiments can we conduct?

2) Single Image 3D Reconstruction – Setup

- ShapeNet Dataset

- Training carried out only on synthetic data

- Comparison against SOTA (2019) models 

generating different 3D data representations

- Tests on realistic data (KITTI, Online 

Products)
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Input

PSGN 3D-R2N2 Pix2Mesh

ONet

Ground Truth

Which experiments can we conduct?

PSGN + BP AtlasNet

2) Single Image 3D Reconstruction – Qualitative Results



Which experiments can we conduct?

2) Single Image 3D Reconstruction – Quantitative Results

13



14

Which experiments can we conduct?

2) Single Image 3D Reconstruction – Real Data



Which experiments can we conduct?

3) Point Cloud Completion

- Reconstruction of meshes from 
noisy point clouds

- Subsampling of 300 points from the 
surfaces of ShapeNet models and 
adding Gaussian noise
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Which experiments can we conduct?

3) Point Cloud Completion

Input

PSGN3D-R2N2

ONet

Ground Truth

DMC



Which experiments can we conduct?

4) Voxel Super-Resolution

Input: coarse 32! voxelizations of a ShapeNet mesh
Task: Reconstruction of a high-resolution mesh
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5) Shape generation and Latent Space Interpolations

Are there any other cool properties?
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Any follow-up works?
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Texture Fields* -Occupancy Flow°

* Oechsle, Michael, et al. "Texture fields: Learning texture representations in function space." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.
° Niemeyer, Michael, et al. "Occupancy flow: 4d reconstruction by learning particle dynamics." Proceedings of the IEEE/CVF international conference on computer vision. 2019.



NeRF*

Any follow-up works?

20* Mildenhall, Ben, et al. "Nerf: Representing scenes as neural radiance fields for view synthesis." Communications of the ACM 65.1 (2021): 99-106.



What have we achieved?
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- Discretization of the 3D space 
into a grid of voxels

- Large Memory Footprint (𝒪(𝑛!))

Voxels

Point clouds

Meshes

- Discretization of the surface 
into 3D points

- Lacking connectivity / 
topology

- Discretization of the surface 
into vertices and faces

- Meshes are hard to predict 
for NNs (complex structure)

Occupancy Networks
- Implicit representation of the 

shapes
- Arbitrary topology and resolution
- Low memory footprint
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Refining the output mesh

1. Simplification using the Fast-Quadric-Mesh-Simplification*
2. Refining the output mesh using first and second order information:

23* Garland, Michael, and Paul S. Heckbert. "Simplifying surfaces with color and texture using quadric error metrics." Proceedings Visualization'98 (Cat. No. 98CB36276). IEEE, 1998.
° Drucker, Harris, and Yann Le Cun. "Improving generalization performance using double backpropagation." IEEE transactions on neural networks 3.6 (1992): 991-997.
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(𝑓- 𝑝/ , 𝑥 − 𝜏)3+𝜆
∇𝑓- 𝑝/ , 𝑥
∇𝑓- 𝑝/ , 𝑥

− 𝑛 𝑝/
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- Sample random points 𝑝/ from each face of the mesh
- 𝑛(𝑝/): Normal vector of mesh at 𝑝/
à Can efficiently normalized using double backpropagation°



Ablation Study

Sampling Strategy

Effect of architecture
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Limits of the proposed method
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