Cleaning the Streets of Montevideo

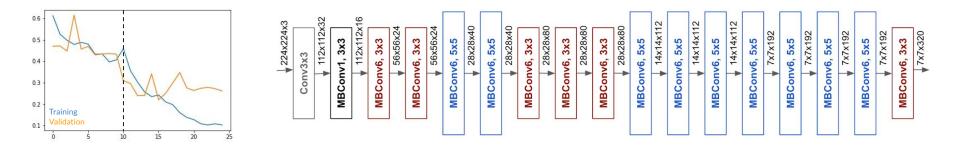
Thomas Wimmer, Lucas McIntyre INF634 - Computer Vision 2022

Motivation

- Started from an idea to help the Uruguayan community \rightarrow Kaggle challenge
- Add our insight to an interesting visual computing exercise

Outline

- Clean/Dirty Classification
 - Setup
 - Results
- Garbage Detection
 - Class Activation Maps
- Garbage Removal
 - Cycle GAN
 - Image Inpainting
- Future Work



Clean/Dirty Classification with CNNs

Pre-trained **ResNet** or **EfficientNet** architectures as convolutional encoders + **fully-connected classifier network** with variable length and width

Fine-tuning on augmented data with initial freezing of convolutional layers

Clean/Dirty Classification with CNNs

Base model	EfficientNet-B0	ResNet-50	ResNet-18
Classifier	[1024, 256, 32]	[512, 128, 32]	[512, 256, 64]
Training strategy	Alternating Freezing / Augmentation	Alternating Freezing / Augmentation	No Freezing
TPR (Recall)	0.9563	0.9378	0.9261
FPR	0.0867	0.0783	0.0800
TNR	0.9133	0.9217	0.9200
FNR	0.0437	0.0622	0.0739
Precision	0.9163	0.9223	0.9199
Accuracy	0.9347	0.9297	0.9230
F1	0.9359	0.9300	0.9229

Table 1. Evaluation of a selection of trained models to identify garbage piles.

Clean/Dirty Classification with CNNs

False Positives

Predicted: 0.65 - True Label: 0

Predicted: 0.58 - True Label: 0

Predicted: 0.72 - True Label: 0

Predicted: 0.85 - True Label: 0

False Negatives

Predicted: 0.36 - True Label: 1

Predicted: 0.24 - True Label: 1

Predicted: 0.05 - True Label: 1

Predicted: 0.45 - True Label: 1

Garbage Detection with Class Activation Maps

True Negative (0.00)

Grad-CAM

True Positive (1.00)

Grad-CAM

True Negative (0.00)

Grad-CAM

True Positive (1.00)

Grad-CAM

True Negative (0.00)

Grad-CAM

True Positive (1.00)

Grad-CAM

Grad-CAM

Garbage Detection with Class Activation Maps

Grad-CAM

False Negative (0.36)

Grad-CAM

False Positive (0.55)

Grad-CAM

Grad-CAM

False Positive (0.58)

Grad-CAM

False Negative (0.24)

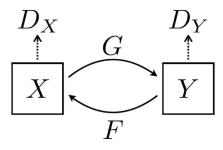
Grad-CAM

False Positive (0.72)

Grad-CAM

False Negative (0.05)

Grad-CAM


Garbage Removal with the Cycle-GAN

Cycle GAN: Cycle-consistent Adversarial Network

Two mappings: $G:X\to Y$ and $F:Y\to X$, joining the dirty images (X) and the clean ones (Y).

<u>Goal of the network:</u> learn the function G such that the distribution of cleaned images G(X) is indistinguishable from the distribution Y.

Inconclusive results...

Image Inpainting Garbage Removal with the Cycle-GAN

Why not use the available information on garbage locations?

Future Work

- Improve the Cycle GAN
- Replace the classic inpainting methods by neural networks
- Quantify the amount of trash
- Improve the dataset quality
- Real-world deployment of (cleaning)
 robots or cameras to detect and report
 pollution

Cleaning the Streets of Montevideo

Thomas Wimmer, Lucas McIntyre INF634 - Computer Vision 2022