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Teaching Skiing to the Computer
Thomas Wimmer, Jules Soria, François Wissocq, Maximilien Chau

Abstract—This paper explores the application of Reinforce-
ment Learning (RL) to solve the Atari game ’Skiing’ using the
Gymnasium toolkit. The main objective of the game is to navigate
a skier down a slope while avoiding obstacles such as trees and
flags, and make the skier go through gates. The game presents a
challenging task due to the complex and dynamic environment,
which makes it an ideal testbed for RL algorithms. In the paper,
we evaluate different methods, from the classic SARSA and
Q-learning to more advanced and modern techniques such as
Double Deep Q-learning. We also evaluate different methods to
interpret and extract information from the game visual display
to take actions. We show the various problems faced during
development, and show how the more complex algorithms do not
necessarily perform better. Overall, this study demonstrates the
potential of RL algorithms to learn effective policies for complex
and dynamic environments such as the Skiing Atari game. 1

I. INTRODUCTION

Reinforcement Learning applied to video games is interest-
ing as it can be applied to a wide variety of environments.
Agents can experiment very different situations and have to
adapt efficiently to them given their past experience. This is
a similar behaviour to how humans play video games, thus
leaving space for comparison between the two. Through video
games, we can simulate risk-free environments and use algo-
rithms to find well-optimised solutions for complex problems.
The agents of the system should get rewards accordingly to
their actions but in a mathematical manner, different from
our intuition when playing a video game. Those rewards
should translate the goal of the game but not necessarily how
humans would try to reach it. Defining the reward of the game
proves itself to be a difficult challenge as it requires a good
understanding of how agents will take decisions given them.
Facing the complexity of the environment defined by the game,
agents should be able to recognise patterns and generalise
rewarded decisions made from a particular observation to the
similar scenarios. Therefore, an important part of this project
was to define the right information to give to the algorithms
from the observations of the game.

Other works such as [2] have already been done on rein-
forcement learning applied to Atari games showing impressive
performance on those.

Our work aims at making a survey of different agents on the
Atari 2600 game “Let’s Play Skiing”. We used different data
pre-processing ideas to fit the implemented algorithms. Then,
we tried to optimise the agents to compare methods and show
when they are performing the best and how agents react to
different reward policies.

1A Jupyter notebook that can be executed using Google Colab can be found
here.

II. BACKGROUND

A. Mathematical Formulae and Notations
Markov Decision Processes (MDPs) are mathematical mod-

els that are commonly used to represent sequential decision-
making problems in Reinforcement Learning (RL)[4]. MDPs
consist of a set of states, a set of actions, a reward function,
and a transition function. The transition function specifies the
probability of moving from one state to another when an action
is taken, and the reward function specifies the immediate
reward received upon transition from one state to another.

In an MDP, an agent interacts with an environment in
discrete time steps. At each time step t, the agent observes
a state st from a set of possible states S, takes an action at
from a set of possible actions A, and receives a scalar reward
rt from a set of possible rewards R. The agent then transitions
to a new state st+1 with probability P (st+1|st, at), where P
is the transition function.

The agent’s goal in an MDP is to learn an optimal policy
π∗(s) that maps each state s ∈ S to an action a ∈ A
that maximizes the expected cumulative reward. The expected
cumulative reward is calculated as the sum of rewards obtained
from time step t to the end of the episode, with a discount
factor γ ∈ [0, 1] applied to future rewards to account for the
time delay. (As such, a value of γ = 0 will be forcing the
agent to focus on immediate rewards while a value of γ = 1
will instead put the focus on the total rewards).

Q-Learning is a model-free RL algorithm used to learn the
optimal action-value function (Q-function) of an agent in an
MDP with a discrete action space. The Q-function estimates
the expected cumulative reward of taking a specific action in
a given state and following an optimal policy thereafter. Q-
learning works by iteratively updating the Q-values of each
state-action pair using the Bellman equation, which relates the
Q-value of a state-action pair to the Q-values of its neighboring
state-action pairs.

The Bellman equation for the Q-function in an MDP is
given by:

Q(st, at) = E
[
rt + γmax

at+1

Q(st+1, at+1)

∣∣∣∣st, at]
where rt is the reward received after taking action at in

state st, and at+1 is the action taken in the next state st+1

under the policy π∗(st+1).

III. METHODOLOGY/APPROACH

A. Our environment
We used in our project the Atari Skiing game (version 5)

which is readily available in the Gymnasium library (pre-
viously called Gym, and developed by the famous OpenAI
company).

https://colab.research.google.com/drive/1O824HqgdhsjvNJrSwHrQvIo1f9N25GsQ?usp=sharing
https://gymnasium.farama.org/environments/atari/skiing/
https://gymnasium.farama.org/
https://openai.com/
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Due to the nature of the game, the observation is an image,
with three channels, of size 160x210 and with 8bit pixels,
taking values in the range [0 − 255] The entire observation
space is 256(210∗160∗3) ≃ 3.88e+242750 ≃ ∞ which is
completely impossible to work with reasonably. We are faced
with the curse of dimensionality.

To solve this curse, we have some tools at our disposal and
we can use clever techniques to reduce the dimensions. First
of all, what interests us, and the algorithm, is not the image
itself, but the information contained.

B. Preprocessing

Indeed, using 2D filters, we can identify and extract key
information from the observed image, such as the ski positions,
the skier location on the image, and the position of the next
gate. With this approach, we greatly reduce the quantity of
information, but keep the quality. This permits us to use
tabular algorithms which would have simply not worked at
all otherwise.

Since Atari’s games were some of the first video games,
the design of the scenes within the game are fairly simple.
The skier can position himself and his skis in eight different
positions (four leaning to the left and four to the right, as
shown in Fig. 1). Since the visuals for these positions always
stay the same, it is possible to design eight different filters that
we can pass over the input observation to find the position
and ski positioning of the skier. This enables us to greatly
reduce the input space to simply three variables: The x and y
position of the skier, as well as his ski positioning. While the
x-coordinate can be in the range between 0 and 140 (the image
width of the cropped observation), the y-coordinate more or
less always stays the same and the ski positioning is a variable
in the range [0, 7].

Fig. 1. There are eight different positions for the skier that we can manually
detect and extract from the scenes.

Because the flags always keep the same shape, we can
design a filter matching the gates that can be used in a convo-
lution over the input image. It is possible that multiple gates
are shown on the screen at the same time if the skier moves.
To simplify and abstract the most important information, we
are only interested in the gate that is the uppermost, as this
will be the next gate the skier has to pass. We thus are able
to reduce the input observation to a set of only 5 variables;
The skier’s position, his ski positioning, and the position of
the next gate2

2It is important to note at this point that we are thus keeping most of the
important information, but we e.g. don’t take into account the trees in the
scene. However, as the Atari Skiing Environment provided, is played in the
easy gamemode, the trees are only to the left and right of the slope and thus
are not obstacles in the way of the skier.

Fig. 2. The detection of the positions of the next gate and the skier (detected
positions marked with an x) and his ski positioning gives accurate information
about the scene in a 5-dimensional state.

C. The Reward Function

The environment itself has a native reward function, which
is the elapsed time. As the goal of the game is to ski down
the course as fast as possible, taking more time is worse.
Therefore, the reward is always negative. At the end of the
run, missed gates are expressed as time penalty (5 seconds for
each gate missed). Bumping into a tree or a flag pole induces
a penalty in time itself, by stopping the skier, but there is no
other penalty.

This reward function is problematic, because it gives con-
stantly negative rewards, no matter how the skier plays, and
gives true feedback only at the end. As such, some agents learn
to optimize their gameplay by staying immobile and wait for
the timer to run out.

Having this in mind, there is a need for a new custom
reward function. In the further course of this section, we will
discuss the design of possible reward functions used in the
experiments.

We can use the detectors presented in III-B to design our
custom reward functions. We first propose a simple reward
function that simply rewards every pass through a gate with
a certain award, which is left to define as a hyperparameter.
Further, if we want to stop the agent from steering towards the
borders of the slope, where no gates can be found and trees
stop the skier from moving, we can create a penalty for coming
too close to the border and a reward for actively moving out
of these regions again.

As explained before, the agents might learn to just break
and stay in the same position until the time runs out. To
prevent this behavior, we designed a reward and penalty that
can be adapted for the different ski positioning. By that, we
can penalize the horizontal positioning of the skis which is
used to break.

Finally, we observed in our experiments that a valid strategy
of the agent can be to simply go straight down the mountain,
as it usually passes nine out of the twenty gates with this
strategy (more on that in the next sections). To alleviate this
problem, several ideas come to mind. We designed another
function which gives a reward at every time step depending
on the horizontal distance between the skier and the center
of the next gate, with the intention to make the agent learn to
steer more towards the gates. Another reward / penalty is based
on the recently played moves of the agent. It thus promotes
changes of direction and penalizes staying in the same position
for too long.
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The design of the right reward function includes an exten-
sive hyperparameter search over finding the best combination
of the designed rewards, up to setting the values for specific
rewards or penalties.

D. Q-Learning

Q-Learning is one of the first solutions that comes to
mind when it comes to implementing a reinforcement learning
algorithm, as it has proven to give good results on a wide range
of problems. It relies on the Bellman equation given by:

Q(st, at)← Q(st, at)+α
[
Rt+1+γmax

a
(Q(st+1, a)−Q(st, at))

]
The Q-Learning algorithm chooses the action according to

the state the agent is in and the best action to be taken in this
state derived from the Q-table. In a video game like “Let’s Play
Skiing”, the environment space is quite large. This causes our
algorithm to have to go through too many state-action pairs
to be efficient, and without training for a very long time, our
agent’s behavior would be very similar to a random behavior.
For such algorithms using the Q-table, we have to further
reduce the observation space.

Since Q-Learning relies on the Q-table and the state-action
pairs contained, the reward attribution should be carefully
implemented. When the skier passes a gate, he gets a reward
but it is obviously not only for the last action he did. For this
reason, we came up with the idea of redistributing the reward
to the previous state-action pairs of the frames preceding the
attribution of the reward. Those state-action frames are stored
in a buffer and receive a weighted reward of the original one.
The size of the buffer should be big enough to give weight
to useful state-actions but not too big which would result in
rewarding sub-optimal actions occurring in certain states.

E. A solution: SARSA

SARSA (State-Action-Reward-State-Action) is a reinforce-
ment learning algorithm that is used to learn the optimal policy
for a Markov decision process (MDP)[4]. It works by using
an iterative process to update the Q-values of each state-action
pair based on the observed reward and the next state and action
taken. Unlike other reinforcement learning algorithms like Q-
learning, SARSA takes into account the current policy being
followed when selecting the next action to take. This makes
SARSA more suitable for problems where the exploration-
exploitation trade-off is important.

The formula for updating the Q-value for a state-action pair
in SARSA is:

Q(st, at)← Q(st, at)+α
[
Rt+1+γQ(st+1, at+1)−Q(st, at)

]
In this formula, st and at represent the current state and

action taken, respectively. Rt+1 is the reward obtained after
taking the action at in state st and transitioning to the next
state st+1 by taking action at+1, which is chosen using the
current policy. α is the learning rate, which controls the step
size of the Q-value update, and γ is the discount factor, which
controls the importance of future rewards. The update rule

essentially adjusts the Q-value for the current state-action pair
based on the expected future rewards that can be obtained by
taking the action determined by the current policy.

F. Another approach: REINFORCE

REINFORCE (REward Increment = Nonnegative Factor
x Offset Reinforcement x Characteristic Eligibility) is a
policy gradient method used for learning in reinforcement
learning[6]. It works by directly optimizing the policy by
maximizing the expected return, which is the sum of the
rewards obtained over a trajectory. To do this, it computes
the gradient of the expected return with respect to the policy
parameters, and updates the policy in the direction of the
gradient using stochastic gradient ascent. Unlike value-based
methods that estimate the value function, REINFORCE can
be used for problems with continuous action spaces.

The formula for updating the policy parameters using the
REINFORCE algorithm is:

θ ← θ + α∇θ log πθ(at|st) ·Gt

In this formula, θ represents the policy parameters, α is
the learning rate, and Gt is the total return obtained after
taking the action at in state st. πθ(at|st) is the probability
of taking action at in state st under the policy defined by the
current parameters θ. The term ∇θ log πθ(at|st) is the policy
gradient, which tells us how the probability of taking the action
at changes with respect to the policy parameters θ. The update
rule essentially increases the probability of actions that lead
to higher returns and decreases the probability of actions that
lead to lower returns.

G. Deep Q-Learning

Deep Q-Learning [2] builds upon the ideas of TD- and Q-
Learning but now replaces Q(s, ·) with a neural network. This
substitution makes the system more flexible and enables us to
use a broad range of methods known from Deep Learning such
as CNNs that can help in dealing with image as inputs.

As the input for the network is highly correlated, we must
find a way to alleviate the problem of learning just a replay.
A common solution for this problem is to use a replay buffer
from which we sample during training.

In our initial experiments, we used a simple DQN, but
we then also carried out experiments with the Double DQN
method which uses a separate predictor network besides the q-
network, as this method usually outperforms the simple DQN
[5].

H. Representation Learning

Self-supervised learning has been shown to be effective
in a variety of domains, including computer vision, natural
language processing, and has become a popular technique for
unsupervised pretraining of deep neural networks. We propose
to use an autoencoder as an alternative (or complement) to
handcrafted features. The goal being to find a procedure
generalizable to other environments, reducing the time spent
to design specific reward functions.
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Fig. 3. autoencoder : lossy compression of an image into a latent space by
the encoder, then the decoder reconstructs the image from the compressed
data. (Picture by A. Dertat)

Convolutional networks are great to reduce information of
grid-like structures. Some DRL architectures already include
those components. Training an autoencoder and using it to
extract features which are then given to a DRL agent has
the advantage of decoupling the feature extraction process
from the agent training. To optimize the reconstruction of an
image, the autoencoder has to compress redundancy and use
the embedding space to store salient features. Since Atari
environments have a lot of redundancy, especially in the
background, the resulting embeddings should contain useful
information for downstream tasks.

For a simple autoencoder composed of a single hidden layer,
the encoder with weights We and bias vector be take as input
x followed by an activation function σe. The resulting vector
h is then fed to the decoder, resulting in output x̂.

h = σe(Wex+ be)

x̂ = σd(Wdh+ bd)
(1)

While training, minimizing the reconstruction error can be
viewed as minimizing a euclidean distance like the L2 norm
between the encoder input and the decoder output.

E ||x− x̂||22 (2)

IV. RESULTS AND DISCUSSION

A. Experiments

Tuning the hyperparameters of a neural network based
method as DQN often is a tedious work, as not only the reward
function and the input representation are to be tuned, but also
network design, and classic neural network hyperparameters
such as the learning rate.

In our experiments, we focused on two network architec-
tures; a fully-connected neural network that takes the simpli-
fied input (5-dimensional vector) as input and a convolutional
network that takes a downsampled version of the relevant
scene as an input (i.e. as in [2]).

We soon realized that the most important element to tune
is the reward function. As discussed in Section III-C, there
exist multiple rewards we can think of and finding the right
combination and parameterization of the different proposed
rewards turns out as the major challenge for tuning this
method.

As our initial experiments showed that standing still and
waiting for the timer to run out is a often-observed solution
with the environment’s original reward function, as the neg-
ative reward is constant for each time step, we decided to

use our own reward functions and discard the environment’s
reward.

Fig. 4. The dotted lines show a discrete reward and penalty for going through
gates and coming too close to the border, respectively. The dashed lines
improve on these reward functions by making them continuous with a higher
reward closer to the center of the gates and a higher penalty for coming closer
to the edges of the screen.

Following our observations, we first designed a discrete re-
ward function that penalizes coming to close to the border and
rewards going through gates. To improve on that, we further
created a continuous reward function based on Gaussians as
shown in Figure 4. Penalties were introduced to penalize the
horizontal ski positioning of the skier and possibly reward
straight skis, as this position is faster.

Unfortunately, we weren’t able with these fixes to find a
model that converges to a strategy that performs better than
going straight down the mountain. The problem is that this
tactic is actually a valid and easy to learn practice to achieve
a reasonable success, as the skier will always be close to the
gates and actually pass nine gates on his way, while not losing
any time to do turns. Of course, the game in the end penalizes
missing gates but it still is a problem that needs to be solved to
include this knowledge into the learning and actually make the
skier turn more often. Penalties for not changing the position
over longer sequences didn’t help.

An additional difficulty, that we so far didn’t cover, is that
steering is no direct operation, but one needs to play the same
action three times to actually change ski positioning. This is a
challenge for reinforcement learning algorithms, as the action
does not have a direct impact on the next observed state. To
account for this difficulty, we tested the several methods with
a modified strategy in which the action that is selected by the
agent is performed three times instead of just once.
Using this strategy, we successfully trained an agent that does
not miss a single gate and doesn’t crash, thus reaching a near
human performance3.

The agent completes the course within approximately 40
seconds. We were able to achieve times of around 34 seconds
when playing it ourselves but after hours and days of training
and finetuning, completing the whole course without missing
a gate or even crashing with a gate is a great success.
The configuration that led to the successful agent uses 100
episodes, with a memory size of 10000, γ = 0.9999 and

3We saved the weights and share them together with our implementation.

https://colab.research.google.com/drive/1O824HqgdhsjvNJrSwHrQvIo1f9N25GsQ?usp=sharing


5

the dimensionality reduction of the states to 5 variables as
explained in Section III-B.

B. Result table

Below is the table that summarizes the performances (mea-
sured by the average number of poles of the different ap-
proaches we took. Of course, these results depend on hyper-
parameters, such as the number of episodes.

SARSA Q-learning DQN

12.2 14.6 20

We observe that tabular methods do not perform as well as
the neural network, and we visually see during the runs that
they encounter some important issues which do not always get
solved by curating a special reward function.

C. Notes on self-supervised feature extraction

The autoencoder pipeline implemented does not allow to
extract meaningful features on which to base downstream
predictions. For every frame given as input, a very similar
noisy reconstruction is generated. The model overfits the data.
The frames sampled from the environment are very similar
and the pipeline should be further modified to accommodate
this, by using different regularization and data augmentation
techniques (like dropout, adding noise to input frames, random
crops, etc).

The quest for self-supervised feature extraction has been
a trend in recent years. The first important benefit would
be to have a generalizable approach, avoiding the feature
handcrafting time bottleneck, plus having a better resiliency
to distributional shifts in the case of online learning. The
second advantage, already mentioned previously, would be to
decouple the feature extraction from the agent training. This
would let us train much smaller controllers (agents), which
would imply much shorter training times and open the doors
for other kinds of automated learning strategies like neuroevo-
lution [1]. The latter requiring a population of networks for
individual training and crossovers. If controllers have lots of
parameters, we cannot fit a descent population in memory.
An other advantage of having small controllers decoupled
from feature extraction is explainability, since the role of each
modules would be better defined. Also, composability could
be a good quality for reinforcement learning research and
industry, in the same way as it plays a key role today in the
design of large language models.

D. Notes on other approaches

The task for this report was to use reinforcement learning
to teach the computer how to ski. In fact, after having found
a way to greatly reduce the input space it would have been
possible to create a simple heuristic algorithm to steer the
skier. Using this algorithm or some human playthroughs expert
examples, it is possible to create an imitation learning based
approach, e.g. using DAgger [3]. Our experiments and (only
limited positive) outcomes thus also show the difficulty and
limits of reinforcement learning based approaches and where
other algorithmic solutions might be better suited.

V. CONCLUSIONS

The project provided valuable insights into the different
methods used in the context of Reinforcement Learning. Ap-
plying these methods in practice and exploring their strengths
and weaknesses in a challenging environment gave us the
chance to dive deeper into the contents of the Advanced
Machine Learning course. We are glad that we were able to
come up with a DDQN-based agent that successfully masters
this difficult environment, using our hand-crafted features for
dimensionality reduction and custom reward functions.
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