
Lab 2: Object Tracking in Videos

Thomas Wimmer

October 2022

1 Mean Shift

1.1 Q1: Basic Experiments

The Mean-Shift algorithm first calculates a histogram from the region of interest
(ROI) defined by the user at the beginning of the video. In the given code
framework, this histogram is calculated over the marginal distribution only over
the Hue values of the HSV image. In general, however, it can also be calculated
for other values or across multiple dimensions. This option will be discussed
in the next section. For the individual frames in the video, a backprojection
is then performed on the specified histogram. On the resulting weight map,
the classical mean shift algorithm can be performed: Starting at the position
of the last tracking window, the window is iteratively shifted in the direction of
the weight centroid (the calculation is weighted with an isotrope kernel function,
usually Gaussian-based) until either a predefined number of iterations is reached
or the algorithm has converged.

Clearly, one of the advantages of mean-shift tracking is that an ROI only
needs to be defined at the beginning of the video and the algorithm does not
need to do any offline or online learning to track the object. This also makes
the algorithm more flexible than, for example, a neural network that has only
been trained to track humans. It is thus application independent. Since the
algorithm is based on the histogram (which can be calculated freely according
to use case over only Hue, Saturation or only over a specific color channel in
RGB) it is also more flexible in terms of the appearance of the tracked objects.
The algorithm is relatively robust to rotations or small deformations of the
tracked object because the tracking is only based on the histogram and thus
not dependent on the spatial orientation of an object as long as it stays within
the tracking window size.

On the other hand, mean-shift tracking has the disadvantage that the ini-
tial window size is not updated (although the size of the tracked object may
increase/decrease over time in the video) and that the algorithm usually has
problems finding a ”lost” object again. Also, when the lighting and thus the
histogram of the tracked object changes, the algorithm in its basic form is not
adaptive to these changes. Occlusions, sudden movements, and complex or
changing backgrounds can pose significant challenges to the algorithm.

1



(a) Tracking the ball in front of the grey background works very well as the tracking
is based on the hue component. We can however observe the problem of non-changing
tracking window sizes in the second image.

(b) The cup is lost in the second image but the algorithm managed to partially recover
in the last image.

(c) Tracking the player in the green shirt can be achieved by only selecting the green
shirt and not too many surroundings in the initial ROI. Using this trick to set a clearly
distinguishable histogram from the surrounding area, the tracking works well.

(d) Tracking the transporter on the left side works well, even in case of occlusions as
in the last image.

(e) However, tracking the car in the center is difficult due to the general blue shift in
the image and the many camera movements and motion blurs. The car is ”lost” and
the algorithm cannot find it again.

(f) Tracking the head and chest of the person doesn’t work when the brightness changes
too much. The algorithm is able to find the person again as he moves back out of the
shadow.

Figure 1: Analysis of tracking results of the Mean-Shift Tracking algorithm.

2



1.2 Q2: In-depth Analysis and Possible Improvements

The analysis of the different components of the HSV image can be performed
by additionally outputting the Hue and Saturation components during track-
ing. Furthermore, the weight map (backprojection of the ROI histogram) can
be output to get even more information about the internal processes in the al-
gorithm. Sample Outputs of what this looks like are given in Figure 2. Based

Figure 2: The visualization of the Hue (1) and Saturation (2) component, as
well as the weight map for the mean-shift algorithm (3) can help understanding
the results of the tracking algorithm (4) with (1-4) from left to right.

on the finding that using the hue component alone does not make sense in most
cases, since it provides more or less arbitrary values for light or dark areas in
the image, and the information about saturation is not considered at all in the
tracking, it only makes sense to try to consider also the saturation component
in a multivariate distribution instead of the marginal distribution over only the
hue component.

Using this method to create the histogram gives much better results in some
cases as is shown in Figure 3. A parameter that is also important to consider
here and that can be tuned not only for saturation but also for the hue channel
is the number of bins for the histogram.

Figure 3: The cup that could not be tracked in the initial approach can now be
tracked of the mean-shift algorithm after considering also the saturation values.

Besides these improvements, iteratively updating the histogram of the ROI
might also be interesting to deal with illumination changes / color shifts in the
image. This can be done by an operation like this one:

roi_hist = roi_hist * (1 - alpha) + roi_hist_new * alpha

3



The parameter alpha becomes an additional hyperparameter in this case. As
can be seen in Figure 4, this can actually improve the results in some cases.
However, it also makes the algorithm more unstable in finding a ”lost” object
in the image, since the histogram is updated with the histograms of the false
detections. So if the algorithm does not find back to the ROI within a few
frames, it is often quite impossible to recover from it.

Figure 4: By updating the histogram we back-project during tracking, we can
even track the person’s shirt in the shadows. However, when the person abruptly
jumps out of the shadow in frame 4, the algorithm loses the ROI and stays in
the shadow. It cannot recover from this mistake in the rest of the video.

2 Hough Transform

2.1 Q3: Basic Setup for Hough Transform

The Generalized Hough Transform is another Object Tracking method that is
The first step in setting up the Generalized Hough Transform is to find a way
to identify the pixels that are relevant to the algorithm. In this assignment,
we select the points based on their gradient magnitude. If the magnitude of
the gradient is greater than a certain threshold, the pixels are relevant. All
relevant pixels in the ROI which is defined by the user at the beginning of the
video are used to create the R-table. The R-table consists of the vectors of the
relevant points to the center of the ROI and they are indexed by their gradient
orientation.

It is thus necessary to compute the gradient magnitudes and orientations
for all pixels in the image. OpenCV provides the user with a method to com-
pute the gradient in x- and y-direction using the Sobel kernel to approximate
the derivatives. From the so found gradients gx, gy we can then calculate the
magnitude and orientation by

|g| =
√
g2x + g2y,

θ(g) = tan−1

(
gy
gx

)
.

We can visualize the gradient magnitude and orientation alongside the nor-
mal images, as well as the orientations of only pixels with significant magnitude
as shown in Figure 5.

4



(a) Gradient magnitude (b) Gradient orientations

(c) Gradient orientations of the rele-
vant pixels with masked pixels in red

Figure 5: The relevant pixels for the Generalized Hough Transform can be
computed by selecting all points with significant gradient magnitude in the
frame. The gradient orientation is used to index the R-table.

2.2 Q4: Calculating the Generalized Hough Transform

2.2.1 Implementation

To perform the object tracking using the Generalized Hough Transform, we have
to build the R-table of our ROI using the gradient orientation as index and the
vectors of relevant points to some reference point (can be chosen arbitrarly but
needs to be the same for all points in the ROI, i.e. the center of the selected
ROI frame) as values. We can use the computation of the gradients as described
above. One important hyperparameter in this case is the number of bins that we
use in our R-table. If we set this number to high (e.g. 360 rows in the R-table,
one row corresponding to one gradient angle in degrees), the resulting voting
map in the end will be too sparse. Making it too small on the other hand, can
lead to a significant slowdown at runtime as there will be many vectors for each
row in the R-table and can also lead to a decrease in accuracy of the tracking.

After creating the R-table from the ROI, we can perform the tracking. For
each image, we identify all the relevant points using the same method as before

5



(selecting points with significant gradient magnitude) and look up the list of
vectors in the R-table that correspond to each gradient orientation. We can
then compute the voting map by giving a vote to each point that can be reached
from the significant points combined with one of the corresponding vectors in
the R-table. Finally, the point in the image that received the most votes can be
selected as the reference point (i.e., the central point of the tracking frame).

2.2.2 Comments

The first notable difference between the Meanshift tracking and the tracking
via the Generalized Hough Transform is the difference in the run-time of the
two algorithms as the latter takes more time and memory to be computed. This
behavior could however possibly be improved by a more efficient implementation
(possibly also at a lower level as the C++ based OpenCV implementations).

When setting fitting gradient magnitude thresholds for the different scenes,
the Generalized Hough Transform often outperforms the tracking using the
Meanshift algorithm, as it improves on some of the issues mentioned in sec-
tion 1.2. An example is shown in Figure 6.

Figure 6: The tracking of the car works very well, even in situations with lots of
camera movement in between frames or slight motion blur. The tracking with
the Meanshift algorithm performed much worse in this example.

Two major problems can be identified with the generalized Hough transform
as we currently use it for object tracking: Tracking is not continuous across
different frames in the video. For each frame, we compute the votemap and
simply choose the argmax as the most likely point where our ROI is currently
located. This decision does not take into account the previous position at all.
This makes it very likely that we will get inconsistent (i.e., ”jumping”) estimates
of where the object is. This behavior can for example be observed when the
object of interest is distorted through motion blur in one frame and sharp in
the next frame again, as can be seen in Figure 7. However, this property can
also have a positive side, meaning that when the object of interest leaves the
image for a moment or is occluded, the algorithm is still likely to find it as soon
as it is fully visible again in the image.

The second major drawback of the generalized Hough transform is that its
performance depends very much on the method we use to decide whether a point
is relevant to the algorithm or not and the method to index the R-table. For
example, if the object to be tracked (e.g., the ROI) contains only a few points
with high gradient magnitude, but other objects in the background have more
relevant points (i.e., more points with high gradient magnitude and similar

6



Figure 7: Since the basic Generalized Hough Transform algorithm simply takes
the argmax of the votemap as the most likely position of the ROI, it is prone
to locally inconsistent predictions from frame to frame.

gradient orientation), it is very likely that the algorithm will have difficulty
finding the desired object in the video. Indexing the R-table by the gradient
orientations makes the algorithm also sensitive to rotations (or deformations)
of the object that should be tracked as the indexing is not rotation-invariant
(only to the degree of binning used for the gradient orientations). This can lead
to undesired behavior. An example of the effect of high gradient magnitudes in
the background is displayed in Figure 8, while an example of the effect of ROI
deformations is visualized in the example in Figure 9.

7



Figure 8: The left part of the image has much more points with high gradient
magnitude and thus the points in this half get much more votes than the points
in the right half where the ROI actually is in the shadow.

Figure 9: The player movement from the first to the second frame changes
the gradient orientations of the pixels so much that the Generalized Hough
Transform can not find the player anymore.

8



3 Combination of the two Approaches (Q5)

The first possible improvement to the Generalized Hough Transform is to apply
the meanshift algorithm to the votemap instead of just selecting the argmax.
This simple trick can prevent the inconsistency between predictions in successive
frames (i.e., the ”jumping” of the tracking window). The results are shown in
Figure 10.

Figure 10: Where the previous basic implementation of the Generalized Hough
Transform still had problems with tracking the ball position, the adapted algo-
rithm using the meanshift algorithm works well.

The next intuitive idea is to combine the weight maps of the two different
methods (i.e., the backprojection map of the histogram and the votemap of the
Generalized Hough Transform). When combining them, we can make use of all
the improvements that we mentioned before, meaning iteratively updating the
histogram of the ROI, using different components of the HSV values and using
the meanshift algorithm to track the object in the combined weight map. For
combining the two different weight maps, there are different possibilities. It first
makes sense to normalize both maps to the interval [0, 1]. Simply adding up the
two weight maps would result in a bias towards the histogram-based method in
most cases as the weight map of it is more dense than the often sparse voting
map of the Hough Transform. A simple weighted calculation of the combined
weight map could look like this:

weights = hough_votes * beta + backprojection_weights * (1 - beta)

This method of combining the two weight maps can work with a beta parameter
that is large enough. Another method that was used in the experiments is adding
the term

weights += hough_votes * backprojection_weights

to the previously computed weight map and thus weighting points with both,
high votes and high backprojection weights even more. The resulting algorithm
can track objects that were previosly hard to detect (in a continuous manner).
An example is shown in Figure 11.

The combination leads to an improvement that comes with slightly more
computational effort and some loss of stability, as the optimal initial ROI looks
different for the two methods. While it is important to include the boundaries of
the object being tracked (i.e., the edges with significant slope) for the generalized
Hough transform, histogram-based tracking works better with narrow ROIs that

9



do not include too much of the background to obtain a histogram that only
contains information about the object being tracked and does not include the
background.

(a) Tracking (b) Weight map (c) Votemap (d) Backprojection

Figure 11: Combining histogram-based tracking (d) and the Generalized Hough
Transform (c) using a weighted sum of the two (b) results in consistent tracking
of the woman across the entire video (a).

3.1 Robustness to Aspect Changes

One of the short-comings of the tracking algorithms used so far is that they
aren’t robust to aspect changes of the tracked object. In many real-life use
cases, this can, however, be the case (e.g., a moving object that changes in
size). Since the algorithms we use are based on the meanshift algorithm on the
weight map, we can use a solution that already exists to adapt to different object
sizes: [1] proposed a method called Camshift that automatically adapts the size
of the tracking window and is thus robust to aspect changes of the object. The
method is implemented in the OpenCV library and can easily be used instead

10



of the meanshift algorithm. It uses the basic meanshift algorithm and adapts
the tracking window size after convergence of the algorithm at each step. The
results are promising as the algorithm can adapt aspect ratio and size as shown
in Figure 12.

Figure 12: Using the Camshift [1] instead of the meanshift algorithm, we can
adapt to different object sizes and aspect ratios.

References

[1] Gary R Bradski. Computer vision face tracking for use in a perceptual user
interface. 1998.

11


