
Lab 1: Bag-of-Features representation for

Content Based Image Retrieval

Thomas Wimmer

October 2022

1 Detectors and descriptors

1.1 ORB

The ORB method [3] uses an extension of the FAST detector that calculates the
FAST detector at several different resolutions (scales) of the image and thus as-
signs a characteristic scale to all detected keypoints. The FAST detector marks
points as keypoints if their circular neighborhood has long contiguous patterns
with significantly brighter values than the point itself. The characteristic ori-
entation for a keypoint is the direction between the centre point and the centre
of mass (brightness values) of its local neighborhood.

The ORB method uses a rotated version of the BRIEF descriptor method
that assigns descriptive vectors to the detected keypoints. The descriptive vari-
ables take integer values between 0 and 255 and the dimension of the descriptors
is 32.

1.2 Kaze

The Kaze method [1] detects keypoints in a nonlinear scale space (i.e. anisotropic
diffusion instead of Gaussian scale space) and is based on efficient additive op-
erator splitting. The detected keypoints are the points with the maximum
scale-normalised determinants of the local Hessian matrix. For each of these
keypoints, a dominant orientation is calculated in a similar way to SURF.

The description of the detected points is done with a modified M-SURF
descriptor. First order derivatives in the local neighborhood of the keypoints are
computed, weighted and summed to a descriptor vector and rotated according
to the dominant orientation. The final descriptor vector has a length of 64 with
values in the range [0, 1].

A visual comparison between the detected keypoints with the two methods
can be found in Figure 1.

1

Figure 1: Comparison between the detected keypoints with Orb and Kaze. The
different distribution of the detected keypoints with the two methods is striking.
While Kaze identifies different keypoints that are well distributed across the
image, ORB sometimes detects the same or very close keypoints several times.
In particular, the keypoints detected by ORB are almost all clearly identifiable
as corner points. Using only this visual analysis, it can be surmised that the
keypoints detected with Kaze are better suited to identifying a scene (our task
in this assignment) than the corner points identified by Orb. These would
presumably be more suitable for determining correspondences and estimating
structure and motion.

2

2 Codebook construction

The rule of thumb that is usually used to determine the size of the codebook
(i.e. the number of clusters in the K-Means method) is the so-called ”elbow
method”. This heuristic method approximates the K at which the loss of the
K-Means method stagnates and decreases only slightly for K ′ > K (usually a
small linear decrease), while for K ′ < K the loss still decays significantly as
K ′ is increased. This technique should theoretically find the best number of
clusters that describes the data set well, but is not overfitted to the data.

In practice, however, it often happens that no sharp ”elbow” can be identified
and other heuristics (such as a threshold for the ratio between intra- and inter-
cluster variance) have to be used.

The K-Means implementation of sklearn was used to compute the clusters
and its centres. This implementation uses the euclidean distance as distance
metric between the points which seems reasonable as this guarantees the con-
vergence of the K-Means algorithm in comparison to e.g. the Mahalanobis
distance [2].

Figure 2: Plotting the final loss of the K-Means cluster against various (expo-
nentially) sampled values for K, one can use the elbow method to find that the
loss for K ≈ .40 more or less terminates its exponential decay.

Using the ”elbow-method” method, we can identify an optimal value for the
number of words in the codebook around 80 to 100.

However, there is another method we can use to determine the number
of words we want in our codebook by estimating the number of different key
point types in the different scenes. Using this rule of thumb, we can estimate
that there are about 200 to 300 keypoints (≈13-20 per class) that might be
interesting to distinguish in the codebook and thus in the global descriptors.
Since computational resources are sparse and clustering takes a lot of time, the

3

codebook was set to a size of 200 in the following experiments.

3 Indexing the Test dataset

(a) Example histograms when using Gaussian mixture models for the code-
book and summing the cluster probabilities over all detected key points as
aggregation operator

(b) Example histograms when using K-Means clustering for the codebook
and calculating the histogram by simply counting the nearest clusters for all
detected keypoints.

Figure 3: Sample Histograms for different indexing methods.

Indexing of the test dataset can be done by applying the same key point and
descriptor detection method as before for the training samples and matching the
found points with the previously determined codebook (i.e. searching for the
closest cluster for all detected key points). With the clusters found, it is easy
to create a histogram by counting the number of occurrences of each cluster in
the image. This method corresponds to the idea outlined in the slides of the
lecture on ”Multiscale Feature Extraction and Description” (p.54).

Of course, more sophisticated aggregation methods could also be used, e.g.
involving the ”certainty” of the association of points to the clusters. This
method, however, requires a different codebook construction with e.g. a Gaus-
sian mixture model. In order to improve the results, this method was imple-
mented to be able to compare the two different methods.

Using a Gaussian mixture model to build our codebook, which is essentially
very similar to soft K-Means clustering, we can not only use the nearest cluster

4

for each new keypoint, but instead use the probability of the point belonging
to a cluster for all clusters. In this way, we can simply sum the probability
distributions for all detected keypoints in a new image and obtain a histogram
for the unseen image. Examples of the global descriptors / histograms for some
images from different classes are shown in Figure 3.

In order to get rid of possible side effects through different amounts of de-
tected keypoints in different images, it is possible to normalize the histograms
for all images. In the experiments that were carried out for the lab, both cases
were considered and compared.

4 Image Retrieval

Having the codebook and the method of indexing for the images defined, it is
easy to create an image retrieval method. Using the indexing method, all test
images are mapped to histograms (the global descriptors).

We can now find the nearest neighbors of an image in the test set by using
a K-Nearest-Neighbor algorithm. However, since the implementation of the kd-
tree only allows Minkowski distances, a brute-force k nearest neighbor search
was implemented. The nearest neighbors should be the most similar pictures
to the input image. Of course, the nearest neighbor is the image itself, so when
referring to the top-1 and the top-3 nearest neighbors in the following section,
the nearest neighbor(s) besides the original image are meant.

4.1 Difference Metrics for Image Retrieval

Since the histograms / global descriptors are essentially just vectors, we can
apply several different metrics to compute the distance between two global de-
scriptors. The distance metrics used in the experiments are:

• χ2 distance:
∑n

i=1

(xi − yi)
2

(xi + yi)

• Histogram intersection:
∑d

i=1 min(xi, yi)

• Bray-Curtis distance:

∑d
i=1 |xi − yi|∑d
i=1 |xi + yi|

• Canberra distance:
∑d

i=1

|xi − yi|
|xi|+ |yi|

• Correlation distance: 1− np.corrcoef(x, y)[0, 1]

• Euclidean distance (L2):
√∑d

i=1(xi − yi)2

• Hellinger distance:
√

1
2

∑d
i=1(

√
xi −

√
yi)2

5

• Kullback-Leibler distance:
∑d

i=1 xi log
xi

x2

• Mahalanobis distance:

√∑d
i=1

(xi − yi)
2

xi + yi

• Manhattan distance (L1):
∑d

i=1 |xi − yi|

5 Evaluation and Results

For the evaluation of the results, we can conveniently use the given labels of
the images to check whether the labels of the nearest neighbor(s) match the
label of the test sample. For the evaluation, the number of top-1, top-3 and
top-5 matches was evaluated, i.e. the average match with the closest neighbor
(different from query image) in the test set and whether the class of the query
image is included in the classes of the nearest 3/5 neighbors.

Through an extensive hyperparameter search, the hyperparameters were
set to use the Kaze method with the following parameters: upright=False,

threshold=0.0003, nOctaves=5, nOctaveLayers=3, diffusivity=3. Using
the computed descriptors, one can construct the codebook and index the test
dataset to find the results for the different methods and distance measures in
the K-Nearest Neighbor algorithm. The results for the different metrics are
displayed in Figures 4, 5.

As can be seen from the diagrams, the best metric differs for the differ-
ent methods used to create the histogram. For non-normalized histograms,
the best results are obtained with the Hellinger, Mahalanobis, χ2 or the Bray-
Curtis distance. For normalized histograms, the Manhattan distance usually
outperforms the other distance metrics, but the Bray-Curtis and Mahalanobis
distances also perform well. The best overall results were obtained by combin-
ing the non-normalized histogram from the Gaussian Mixture Model Codebook
and the Hellinger distance (top-1: 0.45, top-3: 0.67, top-5: 0.76). It can be
observed that in both cases (both when creating the codebook from K-Means
and from the Gaussian Mixture Model), the best results when using the non-
normalized histograms outperform the best results when using the normalized
histograms. It is also observed that using the Gaussian Mixture Model to create
the codebook significantly improves the results.

6

(a) Codebook: KMeans Clustering, Normalized Histograms

(b) Codebook: KMeans Clustering, Non-normalized Histograms

Figure 4: Agreement of the classes of retrieved images compared to the query
image for the creation of the codebook using the K-Means algorithm and using
different distance metrics.

7

(a) Codebook: Gaussian Mixture Model, Normalized Histograms

(b) Codebook: Gaussian Mixture Model, Non-Normalized Histograms

Figure 5: Agreement of the classes of retrieved images compared to the query
image for the creation of the codebook using Gaussian Mixture Models and
using different distance metrics.

8

It is also interesting to check the confusion matrix for the best model that
could be found. As can be seen in Figure 6, the method is very good in finding
matching images for suburbs (1), coastal scenes (5), forests (6) and highways
(7) but often confuses kitchen (3) and living room (4) scenes which can easily
explained by the similarity of these scenes. One can clearly detect that the scenes
inside buildings (bedroom (0), kitchen (3), living room (4), and office (13)) often
have similar keypoints and are thus more confused than other classes. However,
the overall accuracy of this retrieval method is surprisingly high.

Figure 6: Confusion matrix for the top-1 nearest neighbor for the different
classes in the test set. Rows correspond to the real labels and columns to the
predicted labels.

Finally, in Figure 7, a sample output of the constructed system can be found
for one example of all the different classes. The left column in the image shows
the test image and its given class, while the three columns to right show the
three nearest neighbors found in the test dataset.

9

Figure 7: Sample outputs of the constructed system. Left column corresponds
to query image and the three columns to right show the three nearest neighbors
in the test set.

10

References

[1] Pablo Fernández Alcantarilla, Adrien Bartoli, and Andrew J Davison.
Kaze features. In European conference on computer vision, pages 214–227.
Springer, 2012.

[2] Itshak Lapidot. Convergence problems of mahalanobis distance-based k-
means clustering. In 2018 IEEE International Conference on the Science of
Electrical Engineering in Israel (ICSEE), pages 1–5. IEEE, 2018.

[3] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb:
An efficient alternative to sift or surf. In 2011 International conference on
computer vision, pages 2564–2571. Ieee, 2011.

11

