
Cleaning the Streets of Montevideo
December 7th, 2022

Thomas Wimmer
TUM, IP Paris

thomas.wimmer@ip-paris.fr

Lucas McIntyre
École Polytechnique

lucas.mcintyre@polytechnique.edu

Abstract

Detecting and localizing litter in public places is one of
the challenges that must be overcome to enable the use of
advanced cleaning robots in the city of tomorrow. In this
project, we first trained a classification model that can de-
tect the accumulation of litter, and then used class activa-
tion maps to evaluate the predictions of the model. Ulti-
mately, we explored different methods to digitally ”clean”
the streets of Montevideo, namely the usage of a CycleGAN
model and image inpainting.

1. Introduction

The shift from human operation to more autonomous
systems is one of the most important trends, especially
for services that are particularly labor-intensive and phys-
ically demanding. An example of such work, which is usu-
ally physically demanding but not necessarily cognitively
demanding, is the identification and cleaning of garbage
scenes in cities. Automated approaches to the challenge of
automated cleaning already exist at the household level with
”smart” robotic vacuum cleaners, but the implementation of
these machines is generally very limited in terms of artifi-
cial intelligence. It is therefore not straightforward to trans-
fer these robots to cleaning waste scenes in cities (although
several approaches to automation already exist, e.g. by Veo-
lia). The main reason for this is that garbage scenes in cities
are usually very complex and the identification of garbage
scenes requires a deep understanding of the environment in
which the robot operates.

The goal of this project is to develop a system capable
of autonomously identifying garbage in urban scenes and
to explore the explainability of the system’s decisions. In
addition, the system should also be able to ”clean up” the
trash scenes by removing the trash from the images.

2. Identification of Dirty Scenes
The identification of dirty scenes can be modeled as a

binary classification task (clean/dirty). The dataset used
in this project is described in the next section. Different
approaches can be used for this standard computer vision
task. The methods used in this project are described in sec-
tion 2.2.

2.1. Dataset

The dataset is composed of 3416 images of urban scenes
showing road bins in Montevideo, Uruguay. The photos are
gathered from Google Street View, social networks (Twitter
& Facebook), individual’s camera roll, and from pormibar-
rio.uy, a collaborative project from DATA Uruguay aimed
at cleaning the streets of Montevideo. Starting from an idea
to help the uruguayan community, some people talked on a
Twitter thread and this discussion led to a Kaggle challenge
based on this dataset. It was even talked about in the coun-
try’s news, notably in journals like El Pais, El Observador,
and La mañana en casa.

The pictures fit into two categories: some show clean
streets, with waste nicely contained inside the bins,
some show dirty streets with containers overflowing with
garbage. They vary in size depending on their source. For
our project we used the latest dataset (clean-dirty-garbage-
containers-V6.1). It is already split into two folders, test
(1197 items) and train (2219 items), for us. Each folder is
split into dirty and clean images, with: 601 clean and 596
dirty test images, and 1207 clean and 1012 dirty train im-
ages.

2.2. Methods

We decided to use CNNs pre-trained on the ImageNet
dataset, available through the torchvision library, and opti-
mize them for the downstream task of dirty scene classifica-
tion. From the wide range of available models, we decided
to use the ResNet models [1] as a base and the EfficientNet
models [4] as a more sophisticated model architecture.

The fine-tuning task requires replacing the fully-
connected layers in the end of the respective networks with

https://www.veolia.com/en/solution/street-cleaning-bulky-waste-collection
https://www.veolia.com/en/solution/street-cleaning-bulky-waste-collection
https://www.elpais.com.uy/amp/vida-actual/ingeniero-computacion-proyecto-monitorear-contenedores-basura.html
https://www.elobservador.com.uy/nota/promueven-solucion-de-inteligencia-artificial-para-evitar-basura-alrededor-de-contenedores-202091819540
https://www.canal10.com.uy/rodrigo-laguna-monitoreo-contenedores-basura-n676838
https://pytorch.org/vision/stable/models.html


new layers that are ending in a single output neuron (instead
of the previously used 1000 outputs for the ImageNet clas-
sification task). We designed our models to be as flexible
as possible and experimented with different network depths
and widths for the fully-connected part in the end of the
networks, as well as different scales of the ResNet / Effi-
cientNet architecture used. We further introduced dropout
layers that are interleaved with the other layers and can help
preventing overfitting and thus act as a regularization for the
NN.

To find the optimal initial learning rate, we utilized the
LR-Finder module that implements methods to find the op-
timal LR as described in [3]. Since fine-tuning neural net-
works needs a careful handling of the learning rate to not
”unlearn” weights and overfit on the smaller dataset, we
also implemented the use of an adaptive LR scheduler that
decreases the learning rate as soon as a plateau is reached
or the validation loss is even increasing.

Another important measure that one can take to avoid
overfitting to the training set and to improve generalization
of the model is the usage of data augmentation. We used
several different augmentation strategies:

• Random horizontal flips

• Random rotations (up to 10◦)

• Random affine transformations (introducing shear and
scaling)

• Color jitter

• Random transformation to grayscale images

• Random erasing of image parts

The training procedure itself can also be considered a
hyperparameter that needs to be tuned. We have experi-
mented with different training methods. Freezing the pre-
trained convolutional layers during the initial training steps
and performing an initial training only on the randomly
initialized new fully connected layers proved to be useful.
However, fine-tuning the weights of the entire network (in-
cluding the convolutional layers) was shown to have a large
positive impact on the performance of the model. We ex-
perimented with more sophisticated training strategies that
included training on augmented and non-augmented data,
and alternating between freezing and unfreezing convolu-
tional layers.

Evaluation To evaluate the performance of the trained
models, we compute several different metrics on the pre-
defined test set:

• True Positive Rate (Recall): TPR = TP
P

• False Positive Rate: FPR = FP
N

• True Negative Rate: TNR = TN
N

Figure 1. Training (blue) and Validation (orange) loss during the
training of the EfficientNet-B0.

• False Negative Rate: FNR = FN
P

• Precision = TP
PP

• Accuracy = TP+TN
P+N

• F1 Score = 2TP
2TP+FP+FN

In our case, the most important of the first four first men-
tioned metrics is probably the ”true positive” (recall) rate,
since it is more important to detect all trash piles and acci-
dentally mark some clean bins than to detect only parts of
the trash piles and miss some.

Besides evaluating the performance quantitatively, we
can also do a qualitative analysis through visualizing fail-
ure cases (such as false negatives or false positives).

2.3. Results

Achieving an accuracy of 0.9347 on this task seems to
be a reasonably good result. The network trained with
the EfficientNet-B0 as the pre-trained convolutional basis
model proved to perform slightly better than the ResNet
models, especially since it has a higher recall, which we
identified as one of the key metrics for this task. It proved
beneficial to freeze the weights of the pre-trained model at
the beginning of training and start training the classifier on
non-augmented images. However, the training procedure
must also include fine-tuning of the convolutional layers,
as this greatly improves performance. This can be seen
in Figure 1, where fine-tuning of the convolutional layers
on augmented data starts at epoch 10 and a significant de-
crease in losses is observed. However, care must be taken
not to overfit these weights to the data. From the broad
range of experiments that were carried out, we could ob-
serve that using a scaled version of the pre-trained CNNs
(as e.g. EfficientNet-B5) did not bring a significant im-
provement in performance while taking more resources to
train.

As for the visualization of false classifications, we can
see that the dataset itself is not really clean and therefore it

https://github.com/davidtvs/pytorch-lr-finder


Table 1. Evaluation of a selection of trained models to identify garbage piles.

Base model EfficientNet-B0 ResNet-50 ResNet-18
Classifier [1024, 256, 32] [512, 128, 32] [512, 256, 64]
Training strategy Alternating Freezing / Augmentation Alternating Freezing / Augmentation No Freezing
TPR (Recall) 0.9563 0.9378 0.9261
FPR 0.0867 0.0783 0.0800
TNR 0.9133 0.9217 0.9200
FNR 0.0437 0.0622 0.0739
Precision 0.9163 0.9223 0.9199
Accuracy 0.9347 0.9297 0.9230
F1 0.9359 0.9300 0.9229

Figure 2. Examples of false predictions by the EfficientNet-B0 classifier. The top row shows false positives (scenes are not labeled as dirty
but network predicts them as dirty), while the bottom row shows false negatives (actual dirt / garbage not detected).

may be impossible to achieve perfect prediction accuracy.
If we look at the results in Figure 2, we can see that some
images are classified as ”clean” even though there are small
piles of garbage next to the bins (e.g. in the third and fourth
images in the top row). The fifth image in the top row shows
an example that is very challenging for the models because
the lighting in the scene is very poor, resulting in a low-
contrast image. Although we have done rigorous data aug-
mentation to avoid these cases, the model still sometimes
has problems with them. On the other hand, we can observe
that in some pictures, there are annotations possibly from
other sources (e.g. the red lines in the second image of the
bottom row). These minor annotations should not ”confuse”
the model at best, but are still not realistic, as they would not
occur in a real scenario.

3. Network Interpretation

Identifying images that contain garbage piles and quan-
tifying the performance by accuracy and other metrics is

already a nice achievement. However, there exist other
methods of verifying whether and what the networks have
learned. In addition, we might want to actually localize
the garbage piles in the images. For these tasks, we can
make use of class activation maps which were first intro-
duced in [5] and further developed in [2]. The following
section explains the method used in this project in detail,
while results of the analysis can be found in Section 3.2.

3.1. Methods

Class activation maps can help interpret the reasoning of
CNNs by backtracking the gradients of the class of interest
(in our case, there is only one class, namely ”garbage”) to an
activation map (output of a convolutional layer/block) and
projecting it back to the input image. The result is a heat
map showing the regions in the input image that have the
highest activation with respect to the predicted class in the
selected convolutional layer. This idea becomes more clear
with the examples shown in the next section.



We used an available implementation of the Grad-CAM
method and adapted it to work with our implementation.

3.2. Results

Figure 3 presents the activation regions for several pic-
tures, showing which parts of each image influenced the fi-
nal decision of the network. In most cases (see true positives
and true negatives, lines 5 to 8 of figure 3), we can see that
our network manages to focus on the garbage piles when
they exist, which constitutes a major success. When there
is no garbage, there is sometimes some residual activation,
but not enough to influence the final classification.

Let’s now breakdown what happens for the different fail-
ure cases:

Some activation maps reveal mistakes or ambiguities in
the labeling of the data. Indeed, in some cases of false posi-
tives (first two lines of figure 3), the classification algorithm
points out the presence of waste outside containers in scenes
that are a supposedly ”clean”!

For false negatives (lines 3 and 4), we can see that the
CNN output is ”clean” even though the garbage is being
detected by the algorithm. This shows good localization but
not enough activation to influence the decision.

n Figure 4 it can also be seen that the activation maps of
the classes vary between the different layers of the network.
While in the first layers activation is still fairly distributed
over the image with only small areas reaching low activa-
tion, activation is concentrated in larger areas with higher
activation in deeper layers. This is similar to the general
structure of CNNs and the receptive fields of the layers.
While the first layers identify local patches that could be
part of garbage piles, the deeper layers are able to merge
these local features and identify the actual garbage in the
scenes.

4. Cleaning dirty city images

We successfully implemented a neural network able to
accurately recognize garbage piles and we were able to
interpret its reasoning using activation maps. Our aim is
now to use this knowledge to artificially ”clean” the dirty
scenes, using Cycle-Consistent Adversarial Networks (Cy-
cle GAN). In other words, given our two unordered collec-
tions of dirty and clean scenes, we wanted to code an al-
gorithm which can automatically “translate” an image from
the dirty set to the clean set (and vice versa). As well as
a nice visual computing achievement, this would help the
community visualize the end goal of the uruguayan effort
towards a clean environment.

The following section explains the method used for the
coding of this network, and the results can be found in Sec-
tion 4.2.

4.1. Methods

For this class of vision and graphics problems, the goal
is usually to learn the mapping between an input image and
an output image using a training set of aligned image pairs.
However, for our task, paired training data is not available:
we don’t have pictures of exactly the same scene with and
without waste.

We used a Cycle GAN, which is illustrated in Figure 5.
This model includes two mappings G : X → Y and F : Y
→ X, joining the dirty images (X) and the clean ones (Y).
The goal of the network is to learn the function G such that
the distribution of cleaned images G(X) is indistinguishable
from the distribution Y. We use two adversarial discrimina-
tors DX and DY , where DY aims to distinguish between
clean images {y} and ”cleaned” images G(x); in the same
way, DX aims to discriminate between dirty images {x}
and translated images F(y).

The pipeline includes two types of losses: the adversar-
ial losses for matching the distribution of generated images
to the data distribution in the target domain, and the cycle
consistency losses to capture the intuition that if we trans-
late from one domain to the other and back again we should
arrive at where we started, e.g. x → G(x) → F(G(x)) ≈ x

We then used these losses to carry out the training of an
imported Pix2Pix model for image-to-image translation.

4.2. First results

We implemented the pipeline described in the paper [6]
in two ways, once adapting an existing PyTorch implemen-
tation, once using an existing Tensorflow implementation to
our project, to compare the results.

Unfortunately we encountered some difficulties when
training the Cycle GAN. After 200 epochs, the generated
image presented very little difference with the input, except
a slight blur around the garbage (see figure 6). We found
that this revealed various issues with our data and setup.

First of all, unlike the basic tutorial datasets of the paper,
our dataset has problems which makes it hard to learn from.
Some images have occlusions, some have bad lighting. The
bins and garbage can be located all over the place, so there
is no geometrical alignment as we can e.g. find in pictures
of centered faces. Coupled with the fact that our work envi-
ronment (Google Colab) wasn’t suited for long trainings (1
hour train time for 20 epochs, constant timeouts, etc...) and
knowing the difficulty of GAN training in general, we de-
cided to leave the results as they were, and try another way
of cleaning the dirty scenes.

4.3. The Inpaint method

In order to still have an algorithm that can ”clean” the
streets, we recalled that we do have an estimation of the lo-
cation of garbage piles in the image and we used it in the

https://colab.research.google.com/github/ecs-vlc/fmix/blob/master/notebooks/grad_cam.ipynb
https://colab.research.google.com/github/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/CycleGAN.ipynb
https://colab.research.google.com/github/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/CycleGAN.ipynb
https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/generative/cyclegan.ipynb#scrollTo=ITZuApL56Mny


Figure 3. In-depth analysis of the predictions of our trained network.



Figure 4. CAMs of different convolutional layers in the ResNet architecture.

Figure 5. (a) [X : set of dirty images, Y : set of clean images]
Illustration of the two mapping functions and the associated ad-
versarial discriminators DY and DX .

Figure 6. Results after training the CycleGAN for 200 epochs.

following way: by thresholding the backprojected activa-
tion maps, we can identify the locations of garbage in the
scenes. We can use the so-created masks in an image in-
painting approach by removing the identified zones in the
image and replacing it with the inpainting of a dedicated
method. Since time and resources didn’t allow for a neu-
ral solution, we decided to use the inpainting functionality
from the OpenCV library. Some results are shown in Figure
7.

Although the algorithm does not produce high quality
photorealistic results, it still works surprisingly well and
produces reasonably good results. Since we use a classic in-

painting method, the results are often blurry and especially
with larger garbage piles this problem becomes visible, as
can be seen in the last example in Figure 7.

5. Future Work

On the technical side, improving the model for artifi-
cially cleaning garbage scenes is an obvious choice for fu-
ture work. Improving in this case means conducting further
experiments to tune the parameters of the CycleGAN net-
work that we know can work for similar tasks. On the other
hand, we can drastically improve the results of the image in-
painting method through utilizing an autoencoder network
that was trained for image inpainting in a self-supervised
manner on clean city scenes. Instead of using the class ac-
tivation maps which are upsampled to the full image size
from a hidden layer output and thus do not give clear edges,
we could use a dedicated object d method. Since pixel-level
annotations or bounding boxes are not available, training
such a detection method would need to be carried out in a
weakly-supervised manner.

Another improvement could be to have the classification
model not only evaluate whether trash is present, but also
estimate the amount of litter next to trash cans to help clean-
ers identify the dirtier scenes of the city. Weakly supervised
training could prove beneficial in this case to avoid the large
effort required to relabel the entire dataset.

As for the dataset itself, future efforts could include
cleaning up the mislabeling for some images as well as cap-
turing new data by having people send it in on site. In this
regard, it might be beneficial to provide documentation of
the dataset in Spanish.

Finally, an actual implementation of bots or simple cam-
eras that are able to detect and report containers’ statuses
could actually bring research to practice. Now that we can
accurately detect overflowing bins, programmers could de-
velop and deploy a bot which might even be able to auto-
matically clean scenes.

https://opencv.org/


Figure 7. Results of the inpainting-based garbage removal algorithm.

6. Contributions
Detailed list of contributions to the project:

• Task 1: Data Loading (Thomas), Data Augmentation
(Thomas), Model Loading & Training (Thomas and
Lucas), Hyperparameter tuning (Thomas and Lucas),
Evaluation and Visualization of Results (Thomas)

• Task 2: Adaptation of the CAM algorithm to our
project (Thomas and Lucas), Visualization of CAMs
for different network predictions (Thomas and Lucas)

• Task 3: Adaptation of Pytorch and Tensorflow versions
of CycleGAN to our project (Lucas), Experimentation
on data to understand the results (Thomas and Lucas),
Implementation of the Inpaint method (Thomas and
Lucas)

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778, 2016. 1

[2] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-
cam: Visual explanations from deep networks via gradient-
based localization. In Proceedings of the IEEE international
conference on computer vision, pages 618–626, 2017. 3

[3] Leslie N Smith. Cyclical learning rates for training neural
networks. In 2017 IEEE winter conference on applications of
computer vision (WACV), pages 464–472. IEEE, 2017. 2

[4] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International

conference on machine learning, pages 6105–6114. PMLR,
2019. 1

[5] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and
Antonio Torralba. Learning deep features for discriminative
localization. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 2921–2929, 2016.
3

[6] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros.
Unpaired image-to-image translation using cycle-consistent
adversarial networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 2223–2232,
2017. 4

https://colab.research.google.com/github/ecs-vlc/fmix/blob/master/notebooks/grad_cam.ipynb
https://colab.research.google.com/github/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/CycleGAN.ipynb#scrollTo=OzSKIPUByfiN
https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/generative/cyclegan.ipynb#scrollTo=0KJyB9ENLb2y

	. Introduction
	. Identification of Dirty Scenes
	. Dataset
	. Methods
	. Results

	. Network Interpretation
	. Methods
	. Results

	. Cleaning dirty city images
	. Methods
	. First results
	. The Inpaint method

	. Future Work
	. Contributions

