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ABSTRACT

In recent years, the popularity of neural networks has increased and people have
even allowed computers to perform such critical tasks as driving a car or using
machine learning to detect cancer cells. Especially in these areas, it is of immense
importance that the confidence of the neural network’s output also matches the
actual probability of an event occurring when it is predicted. In other words, it
is important that the outputs of neural networks are calibrated. Starting from a
fundamental work by Guo et al. (2017), more and more research has been done
on post-hoc calibration methods in recent years. This report, in addition to intro-
ducing the topic of calibration, highlights three new methods that each attempt to
address the issue of calibration in their own way (Gupta et al., 2020; Patel et al.,
2020; Rahimi et al., 2020). Besides theoretical derivations and backgrounds of the
methods that are presented, the three methods are further compared both qualita-
tively and quantitatively.

1 INTRODUCTION

Deep learning methods using neural networks (NNs) have revolutionised machine learning (ML) in
recent years and are now state of the art in almost all areas of ML research. However, recent research
suggests that while neural networks today are more accurate on the one hand, they are often not well
calibrated on the other (Guo et al., 2017): The output confidence estimates do not match the actual
probability of correctness of the NN’s predictions. However, since reliable confidence estimates
of the networks are of enormous importance, especially in safety-critical areas, there is a need for
post-hoc calibration of the outputs.

Recent research has shown that previously proposed calibration methods, including histogram bin-
ning (HB), temperature scaling and other post-hoc calibration functions, have some weaknesses and
may not work as well as initially thought. For this reason, several novel calibration methods have
been developed, of which spline-based calibration (Gupta et al., 2020), I-max binning (Patel et al.,
2020) and order-preserving functions (Rahimi et al., 2020) are reviewed in this paper.

1.1 DEFINITION OF CALIBRATION

Calibration is usually performed on supervised multi-class1 classification tasks with samples (X,Y )
where X is the input to the ML methods and Y is the corresponding output or label. We as-
sume that X and Y are random variables that follow a ground truth joint distribution π(X,Y ) =
π(Y | X)π(X), where π(Y | X) is not necessarily 1 for a single class and 0 for the others. We
further assume that all samples that are used for training, validation and testing are independent and
identically distributed (iid with joint distribution π).

When considering the calibration of NNs, we assume that every model fθ = σ ◦ gθ with trainable
parameters θ is a composition of a network gθ with non-probabilistic output logits Z ∈ RK (K

1Calibration can also be performed on single-class classification problems. However, in this paper we will
focus on the more general case of multi-class classification.
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classes) and a softmax function2 σ that returns a probabilistic output P (i.e. class probabilities with∑
k P

(k) = 1 where P (k) denotes the k-th element of the vector P ). The class prediction Ŷ (i.e. the
top-1 class prediction) and the corresponding confidence score P̂ can be derived from the network
outputs by taking the maximum:

Ŷ = argmax
k

P (k) with the corresponding P̂ = max
k

P (k). (1)

Note that X , Y , Z, P , Ŷ and P̂ are correlated random variables.

Using these definitions, perfect multiclass-calibration can be defined as
P(Y = k | P = p) = p(k), ∀p ∈ [0, 1]K ∀k ∈ 1, ...,K. (2)

Put into words, the probability that the class k is the true class Y , assuming that the confidence
vector (probabilistic output of the model for all K classes) P is p, is exactly p(k) (the k-th element
of the confidence vector).

A weaker notion of calibration is classwise-calibration:
P
(
Y = k | P (k) = p(k)

)
= p(k), ∀p ∈ [0, 1]K ∀k ∈ 1, ...,K. (3)

Put into words, the probability that the class k is the true class Y , assuming that the confidence for
predicting this class P (k) is p(k), is exactly p(k).

Lastly, a classifier is confidence-calibrated3, if

P
(
Y = Ŷ | P̂ = p

)
= p, ∀p ∈ [0, 1]. (4)

Put into words, the probability that the predicted class Ŷ is the true class Y , assuming that the
confidence for this class prediction P̂ is p, is exactly p.

In practice, it is not possible to achieve perfect calibration but it is possible to improve it using
post-hoc calibration methods.

1.2 CALIBRATION MEASURES

Finding a measure of the quality of the calibration of a method is an important task when comparing
different calibration methods. There are a number of ways to compare two distributions, as well as
some measures created specifically for quantifying calibration. The currently most popular evalua-
tion metrics for calibration will be introduced in this section, while a new binning-free measure of
calibration will be introduced and explained in section 3.1.

1.2.1 EXPECTED CALIBRATION ERROR (ECE)

In order to measure the (mis-)calibration of a method, one can inspect the expected difference be-
tween accuracy and confidence of a given method (Naeini et al., 2015)

E
∣∣∣P(Ŷ = Y | P̂ = p

)
− p

∣∣∣. (5)

In practice, this term can be approximated by first partitioning the confidence scores on different
samples (Xi, Yi) with i ∈ 1, ..., N into equally spaced bins Bm with m ∈ 1, ...,M . After that, an
estimation can be computed by taking the weighted average of the differences between the average
confidence and the accuracy in all the bins.

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(Ŷi = Yi)

conf(Bm) =
1

|Bm|
∑
i∈Bm

P̂i

confidence-ECE =

M∑
m=1

|Bm|
N

|acc(Bm)− conf(Bm)|

(6)

2When we consider single-class classification, the softmax is replaced by a sigmoid function
3The differentiation of these different calibration definitions was first introduced in Kull et al. (2019)
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The ECE is the most common calibration measure used in the literature on neural network calibra-
tion. However, several recent papers have noted that this metric has certain weaknesses (Nixon et al.,
2019; Ashukha et al., 2020). Among other things, the emprisic approximation to the ECE asymptot-
ically underestimates the true ECE as Vaicenavicius et al. (2019) has been able to show. Furthermore
the ECE as proposed by Naeini et al. (2015) only takes into account the top-1 class prediction but not
the calibration for the other classes (only confidence- instead of classwise-calibration). Therefore,
Kull et al. (2019) proposed the classwise ECE

classwise-ECE =

M∑
m=1

|Bm|
N

1

K

K∑
k=1

|acck(Bm)− confk(Bm)| , (7)

with acck and confk being the classwise average prediction and actual proportion of the class k in
the bin Bm. One can think of this measure as an averaged ECE over all classes.

1.2.2 MAXIMUM CALIBRATION ERROR (MCE)

The MCE is base on the same idea of binning as the ECE and was also proposed by Naeini et al.
(2015). Formally it is defined as

max
p∈[0,1]

∣∣∣P(Ŷ − Y |P̂ = p
)
− p

∣∣∣ (8)

and can empirically be approximated with

MCE = max
m∈{1,...,M}

|acc(Bm)− conf(Bm)| . (9)

1.2.3 BRIER SCORE

Early work on the calibration of predictions involved the analysis of weather forecasts, and meteo-
rologists proposed an assessment measure in Brier et al. (1950) that we now call the Brier score:

Brier =
1

N

N∑
i=1

(P̂i − 1(Yi = Ŷi))
2 (10)

or in a more general manner defined for all classes k ∈ {1, ...,K}

Brier =
1

N

N∑
i=1

K∑
k=1

(P
(k)
i − 1(Yi = k))2. (11)

As one can see, the Brier score is also known as mean squared error (MSE) nowadays.

1.2.4 NEGATIVE LOG LIKELIHOOD (NLL)

Since we are comparing the predicted probability distribution and the actual class-distribution in
the test samples, we can of course also use the well-known NLL to evaluate the calibration of our
methods.

2 RELATED WORK

Guo et al. (2017) first published possible weaknesses in the calibration of deep NNs and reviewed
a number of post-hoc calibration methods that can be used to adjust the scores to represent their
true confidence. While first examining the performance of single-class calibration methods, includ-
ing histogram binning (Zadrozny & Elkan, 2001), isotonic regression (Zadrozny & Elkan, 2002),
Bayesian binning into quantiles (BBQ) (Naeini et al., 2015) and Platt scaling (Platt et al., 1999),
Guo et al. (2017) further presents a number of multi-class calibration methods: First, the paper
explains the simple extension of binary binning methods to the multiclass domain by treating the
calibration problem as K one-versus-all binary calibrations. This technique however has some sub-
stantial weaknesses that will be explained and elaborated on in section 3.2 and 5. Subsequently,
various generalisations of Platt scaling to multiclass calibration are presented, whereby the simplest
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solution, the so-called temperature scaling, results in the best calibration of the network outputs
when empirically measuring the confidence-ECE(Guo et al., 2017).

Following this pioneering work, more research has been conducted on the calibration of neural
networks. Among these more recent works, Kull et al. (2019) introduced a post-hoc scaling method
derived from Dirichlet-distributed likelihoods (as opposed to Platt scaling which is derived from
Gaussian likelihoods). Further, Kumar et al. (2019) combined scaling and binning methods in order
to achieve verifiable calibration (which is not guaranteed in scaling-only methods), while Zhang
et al. (2020) suggests using an ensemble of parametric calibration methods (e.g. temperature scaling)
and combining it using composition to achieve accuracy-preserving, data-efficient and expressive
calibration.

Although this report is focused on post-hoc calibration methods, it is important to mention that there
are several ideas on how to obtain calibrated network outputs by using specific network architectures
as Bayesian DNNs (Blundell et al., 2015) and approximations thereof (Gal & Ghahramani, 2015),
certain modifications to the loss function that is used during training (Kumar et al., 2018) or ensem-
ble learning (Lakshminarayanan et al., 2017). Section 5 contains a brief comparison between these
methods and post-hoc calibration.

3 METHODS

The following section will summarize and explain three recent works on the post-hoc calibration of
neural networks, namely

• Calibration of Neural Networks using Splines (Gupta et al., 2020),

• Multi-Class Uncertainity Calibration via Mutual Information Maximization-based Binning
(Patel et al., 2020) and

• Intra Order-Preserving Functions for Calibration of Multi-Class Neural Networks (Rahimi
et al., 2020).

3.1 CALIBRATION OF NEURAL NETWORKS USING SPLINES

Gupta et al. (2020) propose a novel continuous (binning-free) measure for the quantification of the
calibration error that is based on the KS-Error. Using the ideas of the empirical approximation of this
error, they propose a novel calibration method by fitting a differentiable function to the empirically
found data points from the calibration set and using its derivative as recalibration function.

3.1.1 KOLMOGOROV-SMIRNOV CALIBRATION ERROR

First, the authors introduce a new measure for the calibration of probabilistic predictions that, in
contrast to the ECE and its variations is a binning-free metric resulting in a parameter-free measure
(opposed to the explicit setting of bin size and boundaries for ECE). The proposed metric is inspired
by the Kolmogorov-Smirnov (KS) test (Kolmogorov, 1933; Smirnov, 1939).

The authors rewrite the definition of classwise calibration (Eq. 3) using Bayes’ rule:

P
(
Y = k, P (k) = p(k)

)
= p(k)P

(
P (k) = p(k)

)
, (12)

which we will write as P
(
k, p(k)

)
= p(k)P

(
p(k)

)
in the following in order to stick to a simple and

readable notation.

The KS test works by comparing cumulative distributions, resulting in the following property that
we want to test for a given k:∫ σ

0

P
(
k, p(k)

)
dp(k) =

∫ σ

0

p(k)P
(
p(k)

)
dp(k) (13)

Writing the two sides of the equation as ψ1(σ), ψ2(σ) respectively, the KS-distance is defined as

KS = max
σ

|ψ1(σ)− ψ2(σ)| . (14)
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Gupta et al. (2020) argue that p(k) usually consistently over- or underestimates P
(
k|p(k)

)
, and

therefore the sign of P
(
k|p(k)

)
− p(k) is constant for all p(k) (as well as the sign of P

(
k, p(k)

)
−

p(k)P
(
p(k)

)
) which results in a maximum value of the KS-distance when σ is set to 1. Using this,

the expected difference between p(k) and P
(
k|p(k)

)
is defined as

KS =

∫ 1

0

∣∣∣P(k, p(k))− p(k)P
(
p(k)

)∣∣∣ dp(k) = ∫ 1

0

∣∣∣P(k|p(k))− p(k)
∣∣∣P(p(k))dp(k), (15)

which can also be referred to as the expected calibration error for the class k.

In practice, the cumulative distributions in Eq. 13 can be approximated as follows:

ψ1(σ) =

∫ σ

0

P
(
k, p(k)

)
dp(k) ≈ 1

N

N∑
i=1

1(P
(k)
i ≤ σ) · 1(Yi = k)

and

ψ2(σ) =

∫ σ

0

p(k)P
(
p(k)

)
dp(k) ≈ 1

N

N∑
i=1

1(P
(k)
i ≤ σ)P

(k)
i .

(16)

Sorting the data according to the values P (k)
i , we can define two sequences h and h̃ with

h̃0 = h0 = 0,

h̃i = h̃i−1 + 1(Yi = k)/N,

hi = hi−1 + P
(k)
i /N

(17)

and compute the empirical estimation of the KS-calibration error using these sequences as

KS(P (k)) = max
i

∣∣∣hi − h̃i

∣∣∣ . (18)

3.1.2 RECALIBRATION USING SPLINES

While the hi from Eq. 17 is an empirical estimation for

hi ≈ P
(
Y = k, P (k) ≤ P

(k)
i

)
, (19)

we can define a continuous function h(t) that is also empirically approximated by hi (by setting
t = i/N ):

h(t) = P
(
Y = k, P (k) ≤ s(t)

)
h′(t) = P

(
Y = k | P (k) = s(t)

)
,

(20)

where s(t) is the t-th fractile score and h′(t) = dh/dt the derivative of the function.

The idea behind the method proposed in Gupta et al. (2020) is to fit a continuous, differentiable func-
tion to the sampled sequence hi (that is sampled using a held out calibration set, e.g. the validation
set). According to Eq. 20, the derivative of this fitted function is also an estimate for the conditional
probability P

(
Y = k | P (k) = s(t)

)
and can therefore be used to recalibrate the predicted probabil-

ities that are the output of the NN.

Gupta et al. (2020) propose to fit a cubic spline to the sampled points hi (McKinley & Levine,
1998). Moreover, least-squares spline fitting is used to fit a function to a small number of knot
points (ui, vi) = (i/N, hi) (i.e. the sampled hi plotted against the fractile score). Since the fitted
cubic spline is twice continuously differentiable, the derivative of the fitted function can serve as
an estimate for P

(
Y = k | P (k) = s(t)

)
, which can be used directly to recalibrate the output of

the network: The output values of the network P (k) can be mapped to P
(
Y = k | P (k) = s(t)

)
by

computing the fractile of the output score and using this value s−1(t) as input for the derivative of
the fitted spline h′(t):

γ(σ) = h′(s−1(σ)) (21)
with the recalibration function γ, the output of the network σ, the analytically known (through
differentiating the fitted spline) derivative of the function h and the function s−1 which maps an
output score σ to its fractile.
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3.2 MULTI-CLASS UNCERTAINITY CALIBRATION VIA MUTUAL INFORMATION
MAXIMIZATION-BASED BINNING

The second work analyzed in this report paper uses a substantially different idea than the paper
presented in section 3.1. Patel et al. (2020) identifies the problem that the use of equal size or equal
mass binning in common binning methods (Zadrozny & Elkan, 2001; 2002; Naeini et al., 2015)
for recalibration is sample-inefficient for multi-class calibration and often leads to a decrease in
classification accuracy of the models. The proposed solutions to these problems will be introduced
in the following sections.

3.2.1 SAMPLE EFFICIENCY FOR MULTI-CLASS CALIBRATION

The general training of binning methods work by splitting the predicted logits4 Zi of the network
for a number of samples (Xi, Yi) in M bins (Bm with bin intervals [gm−1, gm)) and assigning each
of these bins a representative Rm which is the logit corresponding to the actual share of positive
samples in the bin:

Rm ≜ log(q)− log(1− q)

with q =
1

|Bm|
∑
i∈Bm

1(Yi = Ŷi)
(22)

As indicated in Section 2, binning methods were originally designed for binary decisions and the
most common attempt to extend these methods to the multiclass case is to treat the calibration
problem as K independent one-vs-rest problems. This method however results in a severe sample
inefficiency for classes k with small prior pk. Since for these classes, large calibration sets are
needed to have enough class-k samples for setting accurate bin representatives.

Patel et al. (2020) propose a novel shared class-wise binning in which similar classes are merged into
the same calibration set, resulting in more positive samples. This shared calibration scheme over a
number of classes can be extended to optimizing a single binning scheme for all classes in case the
class priors are balanced. This method can of course also be used to optimize the sample efficiency
of already existing calibration methods that use the one-vs-rest strategy to extend from binary to
multi-class calibration (e.g. the well-known Histogram binning, BBQ or one-vs-rest extension of
Platt scaling).

3.2.2 BIN OPTIMIZATION VIA MUTUAL INFORMATION (MI) MAXIMIZATION

Eq. mass binning struggles especially with small class priors and can result in bins that barely cover
areas with high uncertainty in the predicted class (where calibration would be the most important).
Eq. size binning on the other hand can results in bin edges that are too narrow and therefore in
higher uncertainty for the bin representatives Rm. This is visualized in Figure 1.

In order to fix these problems in binning methods, Patel et al. (2020) proposes bin optimization with
the goal to maximize the mutual information I between the quantized logits Q(z) and the true label
Y , where the binning calibrator is seen as quantizer Q:

{g∗m} = arg max
Q:{gm}

I(Y ;m = Q(Z)) = arg max
Q:{gm}

H(m)−H(m | Y ), (23)

where m is seen as a discrete random variable with P(m|Y ) =
∫ gm
gm−1

P(z|Y )dz and P(m) =∫ gm
gm−1

P(z)dz and the entropy H(m) and the conditional entropy H(m|Y ) are used in the second
equality.

When analyzing this equation, it is interesting to see that H(m) is maximal if P(m) is uniform
(corresponding to Eq. mass binning) and an additional part H(m|Y ) which considers the available
label information Y to result in maximally preserved label information for accuracy.

4The corresponding predicted scores Pi could be used as well for binning, but finding the right binning
edges is usually easier in the logit space R instead of in the interval [0, 1].
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Figure 1: Histogram and KDE of CIFAR-100 logits constructed from 1k calibration samples. Due
to the imbalanced class ratio, the bin edges of Eq. mass binning mainly cover class-0 resulting
in an inaccurate calibration method. Eq. size and I-Max binning both cover the region with high
uncertainty but the dense binning scheme of Eq. size binning will likely not have enough samples
per bin to compute accurate bin representatives. The proposed I-Max binning results in a dense
binning in the critical area with high uncertainty but still enough bin width to compute accurate
representatives and cover some of the areas with lower uncertainty. Figure taken from Patel et al.
(2020).

3.3 INTRA ORDER-PRESERVING FUNCTIONS FOR CALIBRATION OF MULTI-CLASS NEURAL
NETWORKS

The third work that is analyzed in this report is again based on a different idea. Namely, Rahimi
et al. (2020) argue that commonly used calibration techniques are often too simple and hence lack
the expressiveness to calibrate complicated function landscapes generated by deep neural networks.
In order to keep the accuracy of the network’s output, they propose the use of a novel family of neural
networks, namely intra order-preserving neural networks. Using a neural network for calibration of
predictions is not a new idea and has been used in several previous works. However, Rahimi et al.
(2020) argue that the use of unconstrained neural networks might harm the accuracy of the top-1
(or top-k) predictions and that unconstrained neural networks are more likely to overfit on a small
calibration set. They therefore propose to use a class of functions named intra-order preserving
functions instead which is going to presented in the next section.

3.3.1 INTRA ORDER-PRESERVING FUNCTIONS

Figure 2: Visual representation of the function families that are interesting for use as recalibration
functions. For intra order-preserving functions, the ranking within the resulting vector remains
the same as in the input. Order-invariant functions are invariant to permutations of the input, and
inter order-preserving functions maintain the element-wise relationships between two vectors. The
relationship between these three families of functions is shown on the right. The family of diagonal
order-preserving functions D lies in the intersection of the three families.
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Rahimi et al. (2020) first give an overview on the desirable class of functions for calibration5.

Definition 3.1. A function f : Rn → Rn is intra order-preserving if, for any x ∈ Rn, both x and
f(x) share the same ranking. Meaning that for any tie braker t, x and f(x) have the same sorting
matrices S(x) = S (f(x)).

It intuitively makes sense that using intra order-preserving functions for calibration keeps the top-k
accuracy the same since the output of these functions has the same order as the original predictions.
Common intra order-preserving functions are the softmax operator and temperature scaling.

Rahimi et al. (2020) further prove that all intra order-preserving functions can be described in a
certain way, namely:

Theorem 3.1. A continuous function f : Rn → Rn is intra order-preserving iff f(x) =
S(x)−1Uw(x) with U being an upper-triangular matrix of ones, S(x) as sorting matrix of the input
x and w : Rn → Rn being a continuous function such that

• wi(x) = 0, if yi = yi+1 and i < n,

• wi(x) > 0, if yi > yi+1 and i < n,

• wn(x) is arbitrary,

where y = S(x)x is the sorted input x.

Note that the matrix U results in a reverse cumulative sum of any vector v when applied on it
(i.e. (Uv)i =

∑n
j=i vj). Furthermore, since w(x) ≥ 0, applying this upper-triangular matrix results

in a sorted vector.

In many cases, different classes share some common characteristics and therefore it might be in-
teresting to share some properties of the calibrator across all classes. This is where the concept of
order-invariant functions becomes useful.

Definition 3.2. A function f : Rn → Rn is order-invariant if, for any permutation matrix P ∈ Pn

and all x ∈ Rn, f(Px) = Pf(x).

By using order-invariant functions, swapping the elements xi and xj results in simply swapping the
corresponding fi(x) and fj(x). In the context of calibration, this means that the mapping learned
for the i-th class can also be used for class j. Therefore, the calibration function is shared between
different functions while still allowing the output of each class to depend on all other class predic-
tions.

One can again derive a representation similar to the one in Theorem 3.1 for functions that are intra
order-preserving and order-invariant.

Theorem 3.2. A continuous, intra order-preserving function f : Rn → Rn is order-invariant iff
f(x) = S(x)−1Uw(y) with x, y, S(x), U and w(x) as defined in Theorem 3.1.

Note that the only difference to functions that are only intra order-preserving is, that we use the
sorted input y = S(x)x instead of x.

Finally, one can share even more properties of the calibrator across different classes by using diag-
onal functions.

Definition 3.3. A function f : Rn → Rn is diagonal, if f(x) = [f1(x1), f2(x2), ..., fn(xn)] for
fi : R → R with i ∈ [n].

Using diagonal functions for calibration means that the predictions for different classes do not inter-
act with each other in f .

Theorem 3.3. A continuous, intra order-preserving function f : Rn → Rn is diagonal iff f(x) =
[f̄(x1), f̄(x2), ..., f̄(xn)] with some continuous and increasing function f̄ : R → R.

5In this report paper, we will not cover the proofs of any of the theorems presented in Rahimi et al. (2020).
For detailed explanations and proofs, please refer to the original paper.
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Diagonal, intra order-preserving functions are also order-invariant and inter order-preserving and
the use of functions of this family is motivated by the good results shown from temperature scaling
which is also a diagonal, intra order-preserving method.
Definition 3.4. A function f : Rn → Rn is inter order-preserving, if for any x, y ∈ Rn with x ≥ y,
f(x) ≥ f(y).

In the context of calibration, inter order-preserving functions guarantee that fi(x) increases with the
original class logit xi (Rahimi et al., 2020).

An overview on the different families presented in this section and their relation can be found in
Figure 2.

3.3.2 INTRA ORDER-PRESERVING NEURAL NETWORKS

Rahimi et al. (2020) further propose an approach on how to implement the presented families of
functions as trainable neural networks in practice. As there already is a decomposition of intra
order-preserving (and order-invariant) functions, the implementation in a neural network is pretty
straight forward with the only remaining challenge on how to design w in such a way that it fulfills
all rules given in Theorem 3.1.

The authors propose to use a parameterization trick by setting wi(x) = σ(yi − yi+1)mi(x) with a
strictly positive mi(x) that consists of a multi-layer trainable neural network and σ : R → R being
a positive function that is only σ(a) = 0 in case a = 0. In practice, one simply uses the absolute
value function as σ(x) = |x|. Lastly, in order to ensure that m(x) is strictly positive, the softplus
activation is used in the final layer of m 6.

Using these modifications, one can implement intra order-preserving (and optionally order-invariant)
neural networks by using an architecture as the one shown in Figure 3. For the learning of diago-
nal, intra order-preserving functions, the authors suggest utilizing the work of Wehenkel & Louppe
(2019), who proposed neural networks that learn increasing functions.

Figure 3: Flow graph of intra order-preserving neural networks. Taken from Rahimi et al. (2020).

6The softplus activation is defined as s+(a) = log(1 + exp(a)).
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4 EXPERIMENTS

After presenting the three calibration methods, the following section gives an overview of the exper-
iments performed in the papers and aims to present the results as comparably as possible. However,
since a quantitative comparison of reported results can be error-prune and not really fair, section 5
will focus on a qualitative analysis and comparison of the presented methods.

4.1 SETUP OF REPORTED EXPERIMENTS

The authors used pretrained models of well-known neural network architectures for classification as
the Resnet (He et al., 2015), Wide Resnet (Zagoruyko & Komodakis, 2016) or the DenseNet (Huang
et al., 2017) and evaluated the calibration performance of the proposed methods on commonly used
datasets such as ImageNet (Deng et al., 2009), Cifar-10(0) (Krizhevsky et al., 2009) or SVHN (Net-
zer et al., 2018). Unfortunately, comparing the three papers in a quantitative way is a hard without
performing any experiments and only relying on the reported numbers. The following subsection
shows the collected results and is restricted to only the top-1 ECE since this is the only calibration
measure that all three papers reported.

It is important to note that the quantitative comparison shown here is not representative. To make
a comparison in a scientific manner, one would have to conduct new experiments with the three
methods oneself. In particular, one would have to be careful to use the same pre-trained models, use
the same subsets of the data sets as calibration sets, and run a test with multiple metrics (including
KS error). The results listed in Table 1 are only intended to give an impression of the performance
of the methods presented.
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5 DISCUSSION

The following section contains some of my thoughts on the strengths and possible weaknesses of
the works presented, as well as a brief quantitative comparison between the reported results from
Table 1. Since the three methods are based on fundamentally different ideas, it is difficult to compare
their performance, even if one performed some experiments on its own.

5.1 QUALITATIVE COMPARISON

5.1.1 CALIBRATION USING SPLINES

Table 2: Overview of the qualitative analysis of the proposed method in Gupta et al. (2020)

Calibration of NNs using Splines (Gupta et al., 2020)
Accuracy One-vs-rest approach, modification provably keeps top-r accuracy

Hyperaparameters Only number of knots for spline fitting
Runtime Learning-free

Multiclass calibration One-vs-rest approach
Data efficiency One-vs-rest might cause problems with rare classes
Overfitting risk Low∑

i P
(i) = 1 No

Gupta et al. (2020) introduced a new binning-free calibration metric derived from the KS statistical
test. They also propose a new calibration method that uses the interpolation of an empirically found
sequence to derive a continuous calibration function for new samples. The method is learning-free
and has no hyperparameters7 so that it is easy to apply. The risk of overfitting is low with this
method. However, the KS test in its basic definition (used in the paper) is intended for comparing
univariate distributions, and therefore the calibration method is also primarily designed for a binary
calibration task and needs to be extended with a one-vs-rest approach to be used in the multiclass
environment. Therefore, there is no guarantee that the method will maintain the accuracy of the
predictions when the calibration method is applied independently to the different classes. However,
with a small modification of the method, one can demonstrably maintain the top-r accuracy of the
prediction, and no loss of accuracy has been empirically observed in the conducted experiments.
The extension of the method using the one-vs-rest approach may also result in poorer performance
when the prior of a class is low (i.e. for rare classes). Finally, the method does not guarantee by
default that the sum of the calibrated probabilities is one. In cases where this behaviour is required,
one would need to use some post-processing.

5.1.2 CALIBRATION VIA MI MAXIMIZATION-BASED BINNING

Table 3: Overview of the qualitative analysis of the proposed method in Patel et al. (2020)

Calibration via MI Maximization-based Binning (Patel et al., 2020)
Accuracy One-vs-rest approach, Can influence accuracy

Hyperaparameters No hyperparameters
Runtime Optimization of bin edges

Multiclass calibration One-vs-rest approach but contains some multi-class concepts
Data efficiency Concepts to deal with little available data
Overfitting risk Low∑

i P
(i) = 1 No

Patel et al. (2020) proposed a new binning-based method for calibration that uses the available in-
formation not only to compute the bin representatives but also to optimize the bin edges. They
incorporate this information in the objective function that tries to maximize the mutual information

7No hyperparameters except the number of knots for spline-fitting, but the authors provide a heuristic for
this value.
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between the actual class labels and the calibrated values. The bins produced in this way are espe-
cially more suitable for calibration of predictions for classes with a small prior. The second idea
introduced in the paper can be applied to any method that uses the one-vs-rest approach to extend to
multi-class calibration. The idea proposed is to merge the calibration sets for classes with a similar
prior distribution to achieve more accurate bin representatives (or other parameters of the calibration
methods) for rare classes.

The proposed method has no hyperparameters to be tuned empirically and incorporates two ideas
that improve calibration performance for rare classes in unbalanced environments. However, the
problem with all binning-based methods is that the output produced is discrete and reducing the size
of the bins (i.e. more bins) to achieve a finer-grained output usually results in poorer bin represen-
tatives because there are too few samples in each bin. Combined with the ”one-vs-rest” approach
used to extend binning methods to the multi-class setting, the accuracy of the original predictions
will most likely still be compromised, although the proposed MI maximisation-based binning is the
binning method that suffers least from this problem. Furthermore, the sum of the calibrated results
is not guaranteed to be equal to 1, and thus the calibrated values might need to be post-processed.

5.1.3 INTRA ORDER-PRESERVING FUNCTIONS FOR MULTI-CLASS CALIBRATION

Table 4: Overview of the qualitative analysis of the proposed method in Rahimi et al. (2020)

Intra Order-Preserving Functions for Calibration (Rahimi et al., 2020)
Accuracy Keeps Accuracy

Hyperaparameters NN introduces a good amount of hyperparameters
Runtime Training of NN

Multiclass calibration Explicitly handles multi-class calibration
Data efficiency Small risk of overfitting the NN
Overfitting risk NN can overfit on calibration set∑

i P
(i) = 1 Yes

Rahimi et al. (2020) proposed to use a special kind of neural networks that can be trained to cali-
brate the outputs of a machine learning method. The method that is explicitly designed to handle
multi-class calibration makes use of so called intra order-preserving methods. By constraining the
functions that are learned by the NN in this way, the method can provably preserve the accuracy of
the original prediction while returning calibrated confidences. On the other hand, the use of a neural
network introduces a good amount of hyperparameters that need to be empirically found (e.g. struc-
ture of neural network, training procedure). The training and optimization of the hyperparameters
of the neural network might therefore take some time. Using intra order-preserving (and possibly
order-invariant or diagonal) functions prevents the neural network from overfitting to the calibration
set and altering the accuracy of the method. However, the NN can still overfit the ”calibrated” out-
puts to the calibration set which might cause problems with little available data. Another advantage
of the proposed method is the ability to output calibrated probabilities that sum to one, which can
be useful in some cases (e.g. when using the predicted probabilities for a sequence of elements for
further decoding in the pipeline).

5.2 QUANTITATIVE COMPARISON

As already mentioned in Section 4, the comparison of the reported results is only of limited signif-
icance. Especially because the reported results are only given for the top-1 ECE for all of the three
methods.

However, it is still interesting to observe that the intra order-preserving functions in general per-
formed very well and were able to decrease the calibration error by in average 73% (Rahimi et al.,
2020). It is also interesting to see that the order-invariant, intra order-preserving functions and the
diagonal, intra order-preserving functions performed better than the functions that are only intra
order-preserving.

The calibration method proposed by Gupta et al. (2020) leads to comparable improvements in cal-
ibration. It is no wonder that the method outperforms all methods that it gets compared to in the
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paper in terms of the newly proposed KS calibration error. However, even when considering the ECE
metric, the method performs very good and achieves a new state-of-the-art in ImageNet calibration
(Gupta et al., 2020).

Finally, the mutual information maximization-based binning proposed by Patel et al. (2020) per-
forms a worse than the other two methods (but performance is also tested on different models and
possibly different calibration sets), but the calibration can be improved when combining the binning-
based method with a non-parametric scaling method (Wenger et al., 2020). However, it still achieves
the biggest improvement compared to the baseline method on the SVHN dataset (Netzer et al., 2018)
which has an imbalanced calibration set. From this you can see that the methods for improving per-
formance in the face of class inequality and low data availability actually work.

6 CONCLUSION

To sum up, the main contributions of Gupta et al. (2020) are a new binning-free calibration metric,
the KS calibration error, and a theoretically justified learning-free calibration method using interpo-
lation. Patel et al. (2020) proposed a binning-based method with an optimized choice of bin edges
through incorporation of available label information. They further proposed a concept to increase
sample efficiency when extending methods for multi-class calibration using a one-vs-rest approach,
by merging the calibration sets of classes with a similar prior. Finally, Rahimi et al. (2020) intro-
duced a new family of neural networks, intra order-preserving functions (and its variants), that could
also be used in other domains where an intra order-preserving function needs to be optimized.

Calibrated outputs from neural networks are of immense importance in times when some decisions
are based entirely on their predictions, especially in safety-critical areas. The methods that were
presented in this report paper are some of the most advanced post-hoc calibration methods at the
moment and can be easily used in every ML prediction task as they can just be appended to an
already trained model by using the validation set as calibration set. There is no one right method
of calibration that fits all purposes. Choosing the calibration method can be seen as a part of the
design process in some way. This report is intended to provide the reader with an overview and
basic understanding of the methods presented and can serve as a decision-making aid for the choice
of calibration method.
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