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Motivation Related Work

* Equivariance to group actions ensures that features are detected regardless of
their position, rotation, or size.

Group-Convolution®: [f x; ¥1(g) = [ _, f(x) Lg[](x) du(x)
Scale-equivariance has so far only been explored for 2D convolutions.

« Convolutional neural networks (CNNs) are naturally translation-equivariant.
We extend this equivariance to scaling of the input data.

We propose an extension of “Scale-Equivariant Steerable Networks” 2 to 3D.

« A common training objective is to learn to approximate equivariance through data

augmentation. Resulting methods do not guarantee equivariance and handling T N optional - | Global |
o . _ . / ( Interscale | Admissible scales Setting
augmented training data poses an additional learning burden onto the network. Interaction Pauivariance
] ] ] ] ] ] Kanazawa, Sharma, and Jacobs 2014 Input scaling No Grid No 2D
« Equivariant CNN layers give a mathematical guarantee for equivariance and are Xu, Xiao, Zhang, et al. 2014 Filter scaling No Grid Yes 2D
more d ata_eﬁICIent Marcos, Kellenberger, Lobry, and Tuia 2018 Input scaling Yes Grid Yes 2D
Worrall and Welling 2019 Filter Dilation Yes Integer Yes 2D
* Medical data Is often available at various resolutions (from different scanners), (Ghosh and Gupta 2019 Steerable Filters | No Al No 2D
] ] ] Sosnovik, Szmaja, and Smeulders 2019 Steerable Filters Yes All Yes 2D
and methods to detect rare diseases need to operate in a low-data regime. Zhu, Qi Calderbanlk, et al. 2019 Stecrable Filters | Yes Al Yes 2D
Bekkers 2019 Steerable Filters Yes All Yes 2D
] ] . ] . Naderi, Goli, and Kasaei 2020 Steerable Filters Yes All Yes 2D
Translatlon-Equwarlance Scale-Equwarlance Sosnovik, Moskalev, and Smeulders 2021 Filter Dilation Yes \/ii,i e N. Yes 2D
Lindeberg 2021 Steerable Filters No All Yes 2D
Jansson and Lindeberg 2021 Steerable Filters No All Yes 2D
'4 ii 4 Ours Steerable Filters Yes All Yes 3D
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Experiments

@: Convolution (translation-equivariant) ®: Convolution (scale-equivariant)
L. Translation (group action) L,: Scaling (group action)

« Comparison with standard
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equivariant layers.
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—— Ours (avg-pooling) + augmentation
(

i i . Rd C : C - 021
on input images f: R - R* and latent feature maps h: HT — R", respectively. - 4= Ours (max-pooling)
| | | —— QOurs (max-pooling) + augmentation
10 15 25 - 8- Baseline
The kernel basis for three-dimensional scale-equivariant convolutions is formed Number of training samples —2— Baseline + augmentation
from the multiplication of three oriented basis functions (oriented in the x-, y-, and L _
o . . . . Qualitative Results:
z-directions) with equal or different degrees of Hermite polynomials.
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Visualization of equivariance: Equivariant layer types:
Scaling s of data 1.0 0.7 0.49 0.34
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Ls[f *r Y] T IMenze, Bjoern H., et al. "The multimodal brain tumor image segmentation benchmark (BRATS)." IEEE transactions on medical imaging 34.10 (2014): 1993-2024.
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i Conclusions
Network Architecture: _ o _
* We propose an extension of scale-equivariance to 3D convolutions.
« Our newly created network layers include scale-equivariant (transposed)
s outpu convolutions, pooling and normalization layers.

* Our model demonstrates strong generalization in a low data setting and on
scaled test data.

Future Work
5 Concatenation
(® Residual connection (addition) -
- (Strided) Convolution « Extension to other 3D data representations (e.g., point clouds) E E

™ (Strided) Transposed Convolution

ﬁtavers in one residual block * Investigation of the feasibility of scale-equivariance for 6D dMRI
(each consisting of Conv. + Act. + Norm.) - - .y
and other imaging modalities

(bold: new scale-equivariant network layers)
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